• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.02 seconds

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.

Preparation and Characteristics of the Ni-Ferrite Encapsulated Mo-Permalloy Powder

  • Park, Hyun-Kyu;Ji, In-Geol;Oh, Jae-Hee;Ko, Taeg-Yung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.700-702
    • /
    • 2006
  • We prepared a Ni-ferrite encapsulated Mo-permalloy powder through simple electroless plating and heat treatment. It was observed that Ni-ferrite particles formed in a spherical form on each Mo-permalloy grain. The microstructure and the magnetic characteristics of the encapsulated powders depended strongly on oxidation time in the heat-treatment. When the powder was oxidized for 60 min, a dense Ni-ferrite layer covered the Mo-permalloy grain, which in turn exhibited high saturation magnetization of 85.8 emu/g. The magnetic core prepared additionally with the encapsulated powder exhibited a resonant frequency of 12 kHz.

Studies on the Mechanical Properties of Porcelain Bodies (자기질소지의 기계적 강도에 관한 연구)

  • 이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.3
    • /
    • pp.3-13
    • /
    • 1974
  • In order to clarify, factors affecting on mechanical strengthof porcelain bodies, some experiments were carried out for bobies consisting of Hadong kaolin, quartz of optical glass grade and potash-feldspar. At first, degree of vitrification of the fired bodies were examined from the results of bulk density measurement. Constituent minerals of these fired bodies were mainly examined by means of X-ray diffraction, and their microstructure were observed by means of the polarization microscope and scanning electron microscope. Transverse and impact strength of the bodies were also determined. Finally, relations between their mechanical strength and the other properties obtained were discussed. The mechanical strength, at least the transverse strength increased with increasing densification of the bodies and accompanied with an increase of stress produced in the quartz grains and, perhaps other phases composing the bodies.

  • PDF

Synthesis of NiO-doped Al2O3 Powder by Spray Pyrolysis (분무열분해법에 의한 NiO 첨가 Al2O3 분체의 합성)

  • 박정현;조경식;김한태
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.593-602
    • /
    • 1991
  • Al2O3 and NiO-doped Al2O3 powders were prepared from the ethanol solution of Al (NO3)3$.$9H2O and Ni(NO3)2$.$6H2O by spray pylolysis method using two-fluid nozzle. As a result of spraying test with 0.3 mol/{{{{ iota }} concentration starting solution, mean droplet sizes varied with 8.99∼9.69$\mu\textrm{m}$ and those standard deviation were 4.57∼5.12. As-prepared powders which were synthesized at 1000$^{\circ}C$ have spherical shape, sizes of 0.1∼3.0$\mu\textrm{m}$ and specific surface area of 22.34∼24.20㎡/g. Most powders consisted of {{{{ gamma }}-Al2O3 phase and transforned into ${\alpha}$-A;2O3 phase by calcination at 1100$^{\circ}C$ for 1 hr. NiO-doped Al2O3 sintered bodies had better sinterability than those of pure Al2O3 and 0.3 wt% NiO-doped Al2O3 had near theoretical density and dense microstructure.

  • PDF

Low-Temperatrue Synthesis of Mullite Powders by the Emulsion Technique (MgO-Al2O3-SiO2계 요업원료의 제조 및 소결특성 -에멀젼법에 의한 Mullite분체의 저온합성-)

  • 현상훈;이희수;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.361-370
    • /
    • 1989
  • Mullite powders were synthesized from the common solution of aluminum sulfate and sodium silicate solutions by the emulsion-hot kerosene technique. The reaction temperature and mechanism for mullitization and the characteristics of synthesized mullite powders were investigated. The effect of Na components introduced from sodium silicate solution on the physical property and microstructure of sintered mullite was also examined. It was proved that mullites were formed at 75$0^{\circ}C$ through the reaction mechanism of Na2O.2.2SiO2+3.3Al2(SO4)3longrightarrow1.1(3Al2O3.2SiO2)+Na2SO4+8.9SO3. Synthetic mullite powders consisted of the compositiion of 3Al2O3.2SiO2 and showed highly agglomeration of hollow spherical particles of 1${\mu}{\textrm}{m}$ diameter. The density and fracture toughness of sintered mullites were somewhat reduced because of the effect of a very small amount of residual Na components.

  • PDF

The Effect of the Sintering Additives on the Fabrication and Thermal Conductivity of Porous Sintered RBSN

  • Park, Young-Jo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.354-357
    • /
    • 2007
  • The nitriding and post-sintering behavior of silicon powder compact containing sintering additives of 2.3 wt% and 7 wt% were investigated in this study. Regardless of the liquid phase content, elongated large grains of a typical morphology evolved in the post-sintered specimens. Phase analysis revealed a complete phase transformation into ${\beta}-Si_3N_4$ in both porous systems. Oxynitride second phases (mellilite) precipitated in the latter, while those were free in the former containing less amount of liquid phase. The post-sintering condition that yielded a favorable microstructure for a filter application was achieved when the specimens were soaked at $1800^{\circ}C$ for 2 h. It was found that the thermal conductivity of porous $Si_3N_4$ ceramics is dominated by the porosity more than this factor is influenced by the addition of $Al_2O_3$.

Bloating Mechanism for Artificial Light Weight Aggregate of Surface Modification with Coal ash

  • Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • We manufacture artificial lightweight aggregates (ALWAs) using bottom-ash as the primary raw material. We coat the ALWA surfaces with low-melting point materials in order to enable them to bloat, which is essential to reduce the bulk density of the aggregate. Then, we sinter the prepared aggregates at 1000, 1100, and $1200^{\circ}C$ using either the direct or two-step firing schedules. Finally, we evaluate the properties of the fired samples through analyzing their bulk density, water absorption, and microstructure. The surface-modified samples result in a reduction of their bulk density by $0.3{\sim}0.4g/cm^3$ regardless of the firing method used. Based on these results, we conclude that this approach could provide a viable method for the mass-production of ALWAs from industrial waste such as bottom-ash.

Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia (가소결된 그레뉼이 다공질 지르코니아 세라믹스의 특성에 미치는 영향)

  • Lee, Eun-Jung;Ha, Jang-Hoon;Kim, Yang-Do;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.566-574
    • /
    • 2012
  • Porous zirconia ceramics are widely considered to be important due to their unique properties and potential applications. In this paper, we propose a novel approach to produce porous zirconia ceramics. The linear shrinkage of the prepared porous zirconia ceramics could be controlled to 4% by incorporating pre-sintered zirconia granules and hollow polymeric spheres. We also investigated the effect of pre-sintered zirconia granules on the microstructure and the properties, such as the porosity, pore distribution, and bending strength of the porous zirconia ceramics.

Growing Behavior of Nanocrystalline TiN Films by Asymmetric Pulsed DC Reactive Magnetron Sputtering (비대칭 펄스 DC 반응성 마그네트론 스퍼터링으로 증착된 나노결정질 TiN 박막의 성장거동)

  • Han, Man-Geun;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.342-347
    • /
    • 2011
  • Nanocrystalline TiN films were deposited on Si(100) substrate using asymmetric pulsed DC reactive magnetron sputtering. We investigated the growing behavior and the structural properties of TiN films with change of duty cycle and pulsed frequency. Grain size of TiN films were decreased from 87.2 nm to 9.8 nm with decrease of duty cycle. The $2{\theta}$ values for (111) and (200) crystallographic planes of the TiN films were also decreased with decrease of duty cycle. This shift in $2{\theta}$ could be attributed to compressive stress in the TiN coatings. Thus, the change of plasma parameter has a strong influence not only on the microstructure but also on the residual stresses of TiN films.