• 제목/요약/키워드: Ceramic microstructure

검색결과 1,354건 처리시간 0.028초

각종 첨가제가 다공성 Aluminum Titanate Ceramics의 미세구조 및 기계적 특성에 미치는 영향 (Effects of Additives on the Microstructure and Mechanical Properties in Porous Aluminum Titanate Ceramics)

  • 김병훈;나용한
    • 한국세라믹학회지
    • /
    • 제31권2호
    • /
    • pp.137-146
    • /
    • 1994
  • This experiments were focused on a modification of mechamical properties and structure in porous aluminum titanate ceramics by new additives which have been not researched yet. These were consisted of four kinds of additives i.e. Bi2O3, FeO, ZnO and NiO by addition amount of 1 wt% and 5 wt% respectively. The addition of Bi2O3 retarded a degree of syntehsis of aluminum titanate and accelerated in FeO, ZnO, NiO additives. Also, the most effective accelerator in synthesis of alunium titanate was FeO. A additives for the most effective of modification of microstructure, sharp distribtion of pore size and mechanical proterties was on ZnO addition and showed the lowest average pore size and narrowed pore size distribution. In order to improve of microstructure and pore size distribution in porous aluminum titanate ceramics was desired the addition amount of 1 wt% compare to 5 wt%.

  • PDF

상압소결에 의하여 제조된 SiC-AlN 세라믹스의 상 및 미세구조 (Phase and Microstructure of SiC-AlN Ceramics Prepared by Pressureless Sintering)

  • 최웅;이종국;조덕호;김환
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1308-1314
    • /
    • 1995
  • Changes in phase and microstructure were investigated in the SiC-AlN ceramics prepared by pressureless sintering using yttrium aluminum garnet (YAG) as a sintering aid at 200$0^{\circ}C$ and 210$0^{\circ}C$. The SiC/AlN ratio made a remarkable difference in densification, phase relations and the morphology of grains. In the AlN-rich composition, major phase was 2H and microstructure was composed of the densified equiaxed grains irrespective of the sintering temperatures. While those sintered at 200$0^{\circ}C$ were porous with major phase being 3C, the rod-like and the equiaxed grains were coexisted when sintered at 210$0^{\circ}C$ in the SiC-rich composition.

  • PDF

Effect of Cr2O3 Content on Densification and Microstructural Evolution of the Al2O3-Polycrystalline and Its Correlation with Toughness

  • Seo, Mi-Young;Kim, Hee-Seung;Kim, Ik-Jin
    • 한국세라믹학회지
    • /
    • 제43권8호
    • /
    • pp.469-471
    • /
    • 2006
  • The effects of $Cr_2O_3$ on the microstructural evolution and mechanical properties of $Al_2O_3$ polycrystalline were investigated. The microstructure of $Al_2O_3-Cr_2O_3$ composites (ruby) was carefully controlled in order to obtain dense and fine-grained ceramics, thereby improving their properties and reliability with respect to numerous applications related to semiconductor bonding technology. Ruby composites were produced by Ceramic Injection Molding (CIM) technology. Room temperature strength, hardness, Young's modulus and toughness were determined, as well as surface strengthening induced by thermal treatment and production of a fine-grained homogenous microstructure.

Investigation of crystallinity and microstructure of $YMnO_3$ single crystal grown by floating zone method

  • Cho, N.T.;Kwon, D.H.;Shin, J.H.;Ahn, C.I.;Shim, K.B.
    • 한국결정성장학회지
    • /
    • 제13권4호
    • /
    • pp.168-171
    • /
    • 2003
  • $YMnO_{3}$ single crystals have been grown by a floating zone technique and the optimal growth conditions were investigated. Their crystallinity and microstructure were characterized by the chemical etch pit patterns, their distribution and the compositional difference depending on the G value. In particular, the microstructural feature was interpreted in terms of compositional deviation along radial direction on (1010) growth plane.

생체모방기술을 이용한 Boron Nitride /PMMA 복합체 제조 (Biomimetic Preparation of Boron Nitride /PMMA Composite)

  • 남경목;이윤주;김보연;권우택;김수룡;신동근;김영희
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.103-106
    • /
    • 2014
  • Nacre is an organic-inorganic composite material; it is composed of $CaCO_3$ platelet and protein. The microstructure of nacre is a matrix that is similar to bricks and mortar. Technology inspired by nature is called biomimetic technology. In this study, to make high thermal conducting ceramic composite materials using biomimetic technology, a porous green body was prepared with BN platelets. PMMA was infiltrated into the porous green body to make a composite. The microstructure of the composite was observed with FESEM, and the thermal properties were measured. The thermal conductivity of the prepared organic-inorganic composite was 4.19 $W/m{\cdot}K$.

Sol-Gel법에 의한 $ZrO_2$ Ceramic Fiber 제조 : (II) CaO 첨가가 미세구조 및 상전이에 미치는 영향 (Fabrication of Zirconia Ceramic Fiber by Sol-Gel Processing: (II) The Doping Effect of CaO on Their Microstructure and Phase Transition)

  • 김선욱;윤만순;송인호
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.819-823
    • /
    • 1991
  • Pure zirconia ceramic fiber experiences severe volume changes through thermal cyclings of heating and cooling. Zirconia fiber was doped with CaO to stabilize the phase and its effect of CaO was studied on volumetric ratio of each phases, phase transition temperature and microstructure. Tetragonal phase was increased as CaO increases up to 10 mol% and cubic phase was stabilized when CaO was added more than 10 mol%. The average grain size of zirconia fiber was increased as CaO increased and transition temperature was shifted to lower temperature.

  • PDF

$SiC-Si_3N_4$ 세라믹공구의 소결시간과 조성변화가 절삭특성에 미치는 영향 (Effect of Sintering Time and Composition on Cutting Characteristics of $SiC-Si_3N_4$ Ceramic Tool)

  • 박준석;김경재;이성구;권원태;김영욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.321-326
    • /
    • 2001
  • In the present study, $Si_3N_4-SiC$ ceramic composites that contained up to 20 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. The microstructure, the mechanical properties, and the cutting performance of resulting ceramic composites were investigated. By fixing the composition as $Si_3N_4-20$ wt% SiC, the effect of sintering time on the microstructure, the mechanical properties, and the cutting performance were also investigated. For machining of gray cast i개n, the tool life increases with increasing the amount of SiC content in the composites; The tool life also increased with increasing the sintering time. The tool life of the home-made cutting tools was very close to that of commercial $Si_3N_4$ cutting tool. The superior cutting performance of $Si_3N_4-SiC$ ceramic cutting tools suggests the possibility to be a new ceramic tool material.

  • PDF

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

세라믹 용융코어의 미세조직과 기계적 특성 (Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core)

  • 이준호;이덕영
    • 한국주조공학회지
    • /
    • 제28권4호
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.