• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.244 seconds

Effect of Processing Parameters on the Densification-Behaviors by Low Shrinkage in Clay Materials (점토질소지의 공정제어에 따른 저수축 치밀화효과)

  • 임희진;최성철;이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.725-734
    • /
    • 1996
  • Shrinkage behaviors associated with forming drying and firing processes could be a driving force for the densification in materials. Low shrinkage-densification behaviors in clay materials have been shown to be highly dependent upon the processing parameters including particle size effect and kinetic behaviors caused by phases transformation characteristics. Chamottes pre-treated at 90$0^{\circ}C$ and 120$0^{\circ}C$ had dominent influence upon shrinkage control of materials during heat-treatment. But Coarse chamotte particles heat-treated at 120$0^{\circ}C$ did not contri-bute to any densification behaviors in clay materials while these added coarse particles could enhance near-net-shape control. Microstructure / property relationships in clay materials have been thought to be directly influenced by optimized characteristics between low shrinkage and densification behaviors.

  • PDF

Effect of $Ga_2O_3$ and $GeO_2$ Additives on Sintering of Magnesia (Magnesia 소결에 미치는 $Ga_2O_3$$GeO_2$ 첨가의 경향)

  • 이종한;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.99-106
    • /
    • 1983
  • This experiment has been carried out for the purpose of investigating the effect of $Ga_2O_3$ and $GeO_2$ additivies on sintering of magnesium oxide over the temperature range of 130$0^{\circ}C$~150$0^{\circ}C$. The effect of calcining temperature on the bulk densities of fired compacts prepared from this material was observed MgO powder has been obtained by calcining extra reagent grade magnesium carbonate(basic fired) at 90$0^{\circ}C$ for 30 minutes $Ga_2O_3$and GeO2 were added in the ratio of 1, 2, and 3 wt% to MgO and mixed with calcined MgO. The specimens were prepared by compression with pressure of $700kg/cm^2$ than fired at 130$0^{\circ}C$~150$0^{\circ}C$ for 0-5hrs. Sintering behaviour and microstructure of the fired specimens were examined. The optimum calcination temperature of magnesium carbonate was 90$0^{\circ}C$. Densification rates obeyed the equation D=K in t+c. Theoretical density in the case of addition of $Ga_2O_3$ was 23.1 kcal/mole in the case of the additive $GeO_2$ was 14.176kcal/mole. This low value would appear to support a machanism of grain boundatry diffusion The range of average grain size in the case of addition of $Ga_2O_3$ and $GeO_2$ was 21$\mu\textrm{m}$-31$\mu\textrm{m}$.

  • PDF

The Effect of Seawater on Hydration of Clinker Minerals (I) Effects of SO42- and Cl- ions (시멘트 클린커 광물의 수화에 미치는 해수성분의 영향 (I)SO42- 및 Cl-이온에 의한 영향)

  • 신도철;송태웅;한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.1
    • /
    • pp.77-85
    • /
    • 1987
  • Hardened cement paste is mainly affected by corrosion of sulphate and chlorine ions in sea water. In this investigation, many specimens were made with the cement clinker minerals such as C3S, C3A, C4AF and their mixture according to cement composition added various blending materials. After the specimens were immersed in 4% MgSO4 and MgCl2 solutions, the product of reaction, the microstructure of specimen and Ca+2 ion leached in the solution were studied. The formation of Ca(OH)2 in the specimen of C3S is reduced relatively by adding pozzolanic admixtures. The chlorine ion is easily diffuse into the C3S specimen and produced CaCl2 compound, and it makes the specimen porous by leaching out itself into the solution. The specimen of C3A, C4AF are broken down by expanding reaction of ettringite and gypsum compound produced in the MgSO4 solution. At a later period, the ettringite is transformed into gypsum and 5MgO.2Al2O3·15H2O. The C3A in the MgCl2 solution combines chlorine ion to form Friedel's salt and prevents the diffusion reaction of chlorine ion into the specimen. Granulated slag shows inferior effect on the resistance of the specimen in MgSO4 solution by forming ettringite and gypsum, but good result in MgCl2 solution. Pozzolanic materials, on the whole, offer noticable effect on the resistance of the specimen in both solutions.

  • PDF

Sintering and Machanical Properties of Y2O3 Added Al2O3-TiC Composite (Y2O3가 첨가된 Al2O3-TiC복합 소결체의 치밀화와 기계적 성질)

  • 최종선;박상엽;김득중;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.438-444
    • /
    • 1989
  • The role of TiC and the effect of Y2O3 addition on the densification, microstructure and mechanical properties of Al2O3-TiC composite have been studied. The amount of Y2O3 has been varied from 0 to 2 wt.% while keeping the TiC content at 10, 20 or 30 wt.%. The powder compacts have been sintered at 1,75$0^{\circ}C$ for various times in 1 atm Ar atmosphere and hot isostatically pressed (HIPed) at 1,$600^{\circ}C$ for 0.5h under 1,500atm Ar. Considerable increase in sintered density(over 95%) has been achieved by adding 0.5 wt.% Y2O3 in specimens containing high TiC volume. More addition of Y2O3 does not affect the densification. With increasing the sintering time from 0.5 to 4h, slight increase in density results. The growth of Al2O3 grain has been enhanced by Y2O3 addition ; this tendency is reduced with increasing TiC content because of grain boundary dragging effect of TiC particles. The hardness of specimens increases considerably by an addition of 0.5wt.% Y2O3 owing to the density increase. Further addition of Y2O3 has no effect on hardness. Fracture toughness augments with TiC content by crack deflection around the particles. By adding 0.5wt.% Y2O3, all the specimens can be densified to isolated pore stage and thus can be HIPed to full densification and better mechanical property. In particular, the fracture toughness of Al2O3-30 TiC specimen increases about 50% by HIPing. Fully dense Al2O3-30 TiC with good mechanical properties can be prepared by normal Sintering/HIPing process.

  • PDF

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

Thermal Conducting Behavior of Composites of Conjugated Short Fibrous-SiC Web with Different Filler Fraction (짧은 섬유상간의 접합을 가진 Silicon Carbide Web 복합재료의 분율별 열전도 거동)

  • Kim, Tae-Eon;Bae, Jin Chul;Cho, Kwang Yeon;Lee, Dong Jin;Shul, Yong-Gun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.549-555
    • /
    • 2012
  • Silicon carbide(SiC) exhibits many unique properties, such as high strength, corrosion resistance, and high temperature stability. In this study, a SiC-fiber web was prepared from polycarbosilane(PCS) solution by employing the electrospinning process. Then, the SiC-fiber web was pyrolyzed at $1800^{\circ}C$ in argon atmosphere after it was subjected to a thermal curing. The SiC-fiber web (ground web)/phenolic resin (resol) composite was fabricated by hot pressing after mixing the SiC-fiber web and the phenolic resin. The SiC-fiber web composition was controlled by changing the fraction of filler (filler/binder = 9:1, 8:2, 7:3, 6:4, 5:5). Thermal conductivity measurement indicates that at the filler content of 60%, the thermal conductivity was highest, at 6.6 W/mK, due to the resulting structure formed by the filler and binder being closed-packed. Finally, the microstructure of the composites of SiC-fiber web/resin was investigated by FE-SEM, EDS, and XRD.

Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition (Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰)

  • Na, Sang-Moon;Go, Shin-Il;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics (Zr2WP2O12 세라믹스의 합성과 소결거동 연구)

  • Kim, Yong-Hyeon;Kim, Nam-Ok;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Catalytic Characteristics of Perovskite-type Oxides under Mixed Methane and Oxygen Gases (메탄-산소 혼합가스 조건에서의 페롭스카이트계 산화물의 촉매특성 평가)

  • Ahn, Ki-Yong;Kim, Hyoung-Chul;Chung, Yong-Chae;Son, Ji-Won;Lee, Hae-Won;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.232-237
    • /
    • 2008
  • As the single chamber SOFC(SC-SOFC) showed higher prospect on reducing the operation temperature as well as offering higher design flexibility of SOFCs, lots of concerns have been given to investigate the catalytic activity of perovskite-type oxide in mixed fuel and oxidant conditions. Hence we thoroughly investigated the catalytic property of various perovskite-type oxides such as $La_{0.8}Sr_{0.2}MnO_3(LSM),\;La_{0.6}Sr_{0.4}CoO_3(LSC),\;La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3(LSCF),\;Sm_{0.5}Sr_{0.5}CoO_3(SSC),\;and\;Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}(BSCF)$ under the partial oxidation condition of methane which used to be given for SC-SOFC operation. In this study, powder form of each perovskite oxides whose surface areas were controlled to be equal, were investigated as functions of methane to oxygen ratios and reactor temperature. XRD, BET and SEM were employed to characterize the crystalline phase, surface area and microstructure of prepared powders before and after the catalytic oxidation. According to the gas phase analysis with flow-through type reactor and gas chromatography system, LSC, SSC, and LSCF showed higher catalytic activity at fairly lower temperature around $400^{\circ}C{\sim}450^{\circ}C$ whereas LSM and BSCF could be activated at much higher temperature above $600^{\circ}C$.

A Study on Sintering Inhibition of La0.8Sr0.2MnO3- Cathode Material for Cathode-Supported Fuel Cells

  • Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.494-499
    • /
    • 2016
  • In this work, the effects of different sintering inhibitors added to $La_{0.8}Sr_{0.2}MnO_{3-{\partial}}$ (LSM) were studied to obtain an optimum cathode material for cathode-supported type of Solid oxide fuel cell (SOFC) in terms of phase stability, mechanical strength, electric conductivity and porosity. Four different sintering inhibitors of $Al_2O_3$, $CeO_2$, NiO and gadolinium doped ceria (GDC) were mixed with LSM powder, sintered at $1300^{\circ}C$ and then they were evaluated. The phase stability, sintering behavior, electrical conductivity, mechanical strength and microstructure were evaluated in order to assess the performance of the mixture powder as cathode support material. It has been found that the addition of $Al_2O_3$ undesirably decreased the electrical conductivity of LSM; other sintering inhibitors, however, showed sufficient levels of electrical conductivity. GDC and NiO addition showed a promising increase in mechanical strength of the LSM material, which is one of the basic requirements in cathode-supported designs of fuel cells. However, NiO showed a high reactivity with LSM during high temperature ($1300^{\circ}C$) sintering. So, this study concluded that GDC is a potential candidate for use as a sintering inhibitor for high temperature sintering of cathode materials.