• Title/Summary/Keyword: Ceramic media

검색결과 139건 처리시간 0.021초

황산화 균주가 부착된 다공성 세라믹 biofilter를 이용한 $H_2S$ 제거 (Removal of Hydrogen Sulfide Using Porous Ceramic Biofilter Inoculated with Sulfur Oxidizing Bacteria)

  • 박상진;조경숙
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.649-655
    • /
    • 1999
  • Biofiltration of polluted gas streams contained $H_2S$ was studied. The experiments were performed in a laboratory-scale reactor with a porous ceramic media inoculated with sulfur oxidizing bacterium, TAS which was isolated from activiated sludge. The concentration of $H_2S$ in the inlet gas varied from 109 to 3,841 ppm, at the various space velocities(SV) of 50 $h^{-1}$ to 250 $h^{-1}$. Various tests have been conducted to evaluate the effects of such parameters as pH, concentration of sulfate ion and retention time on the pressure drop and maximum elimination capacity. The removal efficiency of $H_2S$ decreased as the $H_2S$ concentration or gas velocity increased in the inlet gas. Pressure drop was insignificant in this system. The maximum elimination capacity could reach up to 16.35g-S/kg-dry packing material/day.

  • PDF

산화물과 금속 복합 분말의 Attrition Milling 및 반응소결: I. 분말의 특성에 따른 분쇄 거동 (Attrition Milling and Reaction-Sintering of the Oxide-Metal Mixed Powders: I. Milling Behavior as the Powder Characteristics)

  • 황규홍;박정환;윤태경
    • 한국세라믹학회지
    • /
    • 제31권3호
    • /
    • pp.337-345
    • /
    • 1994
  • The reaction-sintered alumina and zirconia-alumina ceramics having low firing shrinkage were prepared from the Al/Al2O3 or Al/ZrO2(Ca-PSZ) powder mixtures via the attrition milling. And in this milling process the effect of the characteristics of used powders was investigated. Attrition milling was much more effective in reducing the particle size of ceramic/metal mixed powders than ball milling. Powder mixtures of flake-type Al with coarse alumina was much more effectively comminuted by the attrition milling than the mixtures of globular-type Al with coarse alumina powders. And coarse alumina than fine alumina was much more beneficial in cutting and reducing the ductile Al particles. In the contrary to Al/Al2O3 powder mixtures, Al/ZrO2 powder mixtures was not effectively comminutd. But whether using the alumina ball media or attrition milled with Al2O3 powder rather than Al, the milling efficiency was much more increased.

  • PDF

습식분쇄공정에서 액상매체가 실리콘 분쇄 및 산화특성에 미치는 영향 (The Effect of Liquid Medium on Silicon Grinding and Oxidation during Wet Grinding Process)

  • 권우택;김수룡;김영희;이윤주;신동근;원지연;오세천
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.121-126
    • /
    • 2014
  • The influence of a liquid medium duringa wet-milling process in the grinding and oxidation of silicon powder was investigated. Distilled water, dehydrated ethanol and diethylene glycol were used as the liquid media. The applied grinding times were 0.5, 3, and 12 h. Ground silicon powder samples were characterized by means of aparticle size analysis, scanning electron microscopy(SEM), x-ray powder diffraction (XRD), FT-IR spectroscopy and by a chemical composition analysis. From the results of the characterization process, we found that diethylene glycol is the most efficient liquid medium when silicon powder is ground using a wet-milling process. The FT-IR results show that the Si-O band intensity in an unground silicon powder is quite strongbecause oxygen becomes incorporated with silicon to form $SiO_2$ in air. By applying deionized water as a liquid medium for the grinding of silicon, the $SiO_2$ content increased from 4.12% to 31.7%. However, in the cases of dehydrated ethanol and diethylene glycol, it was found that the $SiO_2$ contents after grinding only changed insignificantly, from 4.12% to 5.91% and 5.28%, respectively.

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구 (A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals)

  • 김순호;최정민
    • 대한건축학회논문집:구조계
    • /
    • 제35권12호
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

저온균일침전법으로 제조된 루틸상 TiO2분말의 분산 안정성 (Dispersion Stability of Rutile TiO2Powder Obtained by Homogeneous Precipitation Process at Low Temperature)

  • 배현숙;박순동;김흥희;이창규;김선재
    • 한국세라믹학회지
    • /
    • 제39권1호
    • /
    • pp.38-44
    • /
    • 2002
  • 여러 종류의 전해질이 존재할 때, 수계 및 비수계 분산매체에서 저온균일침전법으로 제조된 침상형태의 일차입자를 갖는 나노 크기의 루틸상 TiO$_2$분말에 대한 분산 안정성을 조사하였다. 제타전위 측정은 수계 및 비수계 분산매체에 전해질 첨가가 TiO$_2$입자 표면의 전위 역전을 유발하는 것을 보여주었다. 비수계 분산매체에 분산되어 있는 TiO$_2$입자 사이에 작용하는 정전기적 반발력은 수계 분산매체에서보다 크게 관찰되었고, 이것은 점도, 유전 상수와 같은 유기 용매의 물리적 특성과 밀접한 연관이 있음을 알 수 있었다. pH, 전해질의 농도와 이온의 원자가는 TiO$_2$입자의 표면전위를 크게 변화시켰고, TiO$_2$입자의 분산 거동을 사실상 주도하였다.