• Title/Summary/Keyword: Ceramic Membrane

Search Result 355, Processing Time 0.026 seconds

Room Temperature Growth of Magnetite Films on Arachic Acid Monomolecular Layers

  • Ishihara, Takashi;Kitamoto, Yoshitaka;Shirasaki, Fumio;Abe, Masanori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.401-404
    • /
    • 2000
  • Mimicking the bacterial synthesis of magnetosomes, in which the functionalized surface of a cytoplasmic (lipid) membrane is considered to be stimulating the crystal growth of magnetite, we have successfully grown magnetite films at $30^{\circ}C$ using an arachic acid monomolecular layer as a functionalized surface. The lipid monomolecular layer was spread on an aqueous solution of FeCl$_2$ which was oxidized by flowing a mixed gas, with ratio $O_2$/$N_2$=1/2000, on the surface of the lipid layer. Mossbauer and X-ray diffraction analyses revealed that the Fe$_3$O$_4$ films contain small amounts of ferric hydroxyl impurity phases of ${\alpha}$-FeOOH and ${\tau}$-FeOOH. This is because the oxygen partial pressure at the ferrite/aqueous interface changed as the film (through which the gas penetrated) increased in thickness. Methods to obtain single phase magnetite films are proposed.

  • PDF

Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes (팔라듐 합금 수소분리막의 내구성 향상)

  • Kim, Chang-Hyun;Lee, Jun-Hyung;Jo, Sung-Tae;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Pd alloy hydrogen membranes for hydrogen purification and separation need thermal stability at high temperature for commercial applications. Intermetallic diffusion between the Pd alloy film and the porous metal support gives rise to serious problems in long-term stability of Pd alloy membranes. Ceramic barriers are widely used to prevent the intermetallic diffusion from the porous metal support. However, these layers result in poor adhesion at the interface between film and barrier because of the fundamentally poor chemical affinity and a large thermal stress. In this study, we developed Pd alloy membranes having a dense microstructure and saturated composition on modified metal supports by advanced DC magnetron sputtering and heat treatment for enhanced thermal stability. Experimental results showed that Pd-Cu and Pd-Ag alloy membranes had considerably enhanced long-term stability owing to stable, dense alloy film microstructure and saturated composition, effective diffusion barrier, and good adhesive interface layer.

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane (공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성)

  • Park, Se Hyung;Sonn, Jong Suk;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.407-411
    • /
    • 2015
  • Dense ceramic membranes have been prepared using the commercial perovsikite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at $1,100^{\circ}C$ for 2 hr. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at $950^{\circ}C$ were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Nanoindentation Experiments on MEMS Device (Nanoindenter를 이용한 MEMS 제품의 기계적 특성 측정)

  • 한준희;박준협;김광석;이상율
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.657-661
    • /
    • 2003
  • The elastic moduli or fracture strengths of multi-layered film (SiO$_2$/po1y-Si/SiN/SiO$_2$, 2.77 $\mu\textrm{m}$ thick), CVD diamond film (1.6 $\mu\textrm{m}$ thick), SiO$_2$ film (1.0 $\mu\textrm{m}$ thick) and SiN film (0.43 $\mu\textrm{m}$ thick) made for the membrane of ink-jet printer head were measured with cantilever beam bending method using nanoindenter after fabricating in the form of micro cantilever beam (${\mu}$-CLB). And the elastic moduli of ${\mu}$-CLB of SiO$_2$ film and SiN film were compared with the value of each film on silicon substrate determined with nanoindentation method. The results showed that the modulus and strength of multi-layered film decrease from 68.08 ㎬ and 2.495 ㎬ to 56.53 ㎬ and 1.834 ㎬, respectively as the width of CLB increases from 18.5 $\mu\textrm{m}$ to 58.5 $\mu\textrm{m}$. And the elastic moduli of SiO$_2$ and SiN films measured with ${\mu}$-CLB bending method are 68.16 ㎬ and 215.45 ㎬, respectively and the elastic moduli of these films on silicon substrate measured with nanoindentation method are 98.78 ㎬ and 219.38 ㎬, respectively. These results show that with ${\mu}$-CLB bending technique, moduli can be measured to within 2%.

Degradation of Phenol by "TiO2 Ceramic Membrane+UV+H2O2" AOP ("TiO2 촉매막+UV+H2O2" 고도산화법(AOP)을 이용한 페놀 분해)

  • Choung, Youn Kyoo;Kim, Jin Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.645-654
    • /
    • 1994
  • Photocatalytic oxidation conditions of reactant recirculation flow rate 275 mL/min, aeration rate 2 LPM and $UV+TiO_2+H_2O_2$(500 mg/L) proved to be appropriate for water including organic materials treatment. With increasing turbidity and suspended solids concentration, at turbidity 10 NTU-suspended solids concentration 29 mg/L the phenol degradation efficiency increased, which in turn decreased at turbidity 50 NTU-suspended solids concentration 170 mg/L, however no significant differences were observed, demonstrating similar results with those obtained at zero turbidity and suspended solids concentration. The degradation efficiency of phenol decreased with increasing influent phenol concentrations. The $UV+TiO_2+H_2O_2$ photocatalytic advanced oxidation process conducted is considered to be possibly applied to the drinking water treatment, and the post-treatment process of biological wastewater treatment.

  • PDF

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Design of Implantable Microphone for Artificial Middle Ear System

  • Kim Min-Kyu;Lim Hyung-Gyu;Yoon Young-Ho;Lee Jyung-Hyun;Park Il-Yong;Song Byung-Seop;Kim Myoung-Nam;Cho Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • An implantable microphone that can be utilized as part of a totally implantable hearing aid is designed and implemented. The proposed microphone is implanted in the center of the pinna, and designed to ensure the speech frequency range and the appropriate sensitivity. The characteristics of the proposed microphone are evaluated using a finite element analysis (FEA). The microphone is composed of a small electric condenser microphone, titanium case 6.2mm in diameter and 3mm high, and $10{\mu}m$ SUS316L vibrating membrane in contact with hypodermic tissue to maintain the sensitivity of the microphone. The microphone components are all made of biocompatible materials, then the assembled microphone is hermetically sealed using a polymer and ceramic. Experiments with the fabricated microphone confirm an operational bandwidth of up to 5kHz without any decline of sensitivity in 6mm of hypodermic tissue.