• Title/Summary/Keyword: Ceramic Materials

Search Result 5,191, Processing Time 0.037 seconds

Recent Trend of Esthetic All-Ceramic Materials and Guidelines for Correct Cementation (올세라믹 심미 수복재료의 최신 동향과 적합한 시멘트 선택 및 사용)

  • Park, Yeong-Joon
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.413-434
    • /
    • 2020
  • Recently, there are much improvement in optical and mechanical properties of dental ceramic materials coupled with improved fabrication techniques, which have caused a considerable shift in the preference of the dentists to ceramic restorations. Because the chemical composition and microstructure of all-ceramic materials are different by the type, correct choice of cement type and surface treatment procedure, and cementation strategy is essential for the success of ceramic restorations with adequate retention and decreased incidence of complications. This manuscript reviews on the most often prescribed and some newly developed ceramic materials, and the selection criteria and usage guidelines of cement materials that are used in conjunction with various ceramic materials. This manuscript emphasizes that continuous updating the information of newly developed ceramic and cement materials and application techniques by the dentists and dental staffs are demanding in response to the constantly improving ceramic and cement materials and corresponding application protocol changes.

  • PDF

Formaldehyde Adsorption and Physical Characteristics of Hydrothermal Reacted Panels Using Porous Materials (다공성 원료를 사용한 수열합성 패널의 물성과 포름알데히드 흡착 특성)

  • Im, Du-Hyuk;Chu, Yong-Sik;Song, Hoon;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.627-632
    • /
    • 2009
  • Formaldehyde emissions from the construct was harmful to human. Diatomite, bentonite and zeolite were used as porous materials for fabricating panels. Formaldehyde adsorption and physical characteristics of porous materials were investigated and hydrothermal method was applied to fabricate panels. Formaldehyde adsorption contents of panels with porous materials were higher than that of panel without porous materials. The panels with Cheolwon diatomite and Pohang zeolite showed excellent characteristics of Formaldehyde adsorption. These characteristics were caused by higher surface area and pore volume of porous materials. Formaldehyde adsorption contents were influenced by surface area and pore volume of panels. Correlation coefficient between surface area and Formaldehyde adsorption content of panels was 0.87. The panels with porous materials had higher strength than that without porous materials because of bridging role particles.

Hygroscopic Characteristic of Hydrothermal Reacted Panels Using Porous Materials (다공성 원료를 사용한 수열합성 패널의 흡습 특성)

  • Chu, Yong-Sik;Kwon, Choon-Woo;Song, Hoon;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.832-838
    • /
    • 2008
  • Diatomite, bentonite and zeolite were used as porous materials for fabricating hygroscopic panels. Moisture adsorption and desorption of porous materials were investigated and hydrothermal method was applied to fabricate panels. Cheolwon diatomite and Pohang zeolite showed excellent characteristics of moisture adsorption and desorption. These characteristics were caused by higher surface area and pore volume of porous materials. Correlation coefficient between surface area and moisture adsorption content of porous materials was 0.93. Moisture adsorption contents were influenced by surface area and pore volume of panels, and surface area more effected on moisture adsorption. Correlation coefficient between surface area and moisture adsorption content of panels was 0.86. Moisture adsorption content of panel with 10% Pohang zeolite was $180\;g/m^2$ and that of 10% Cheolwon diatomite was $170\;g/m^2$. Moisture desorption content of panel with 10% Pohang zeolite was $105\;g/m^2$. Moisture adsorption contents of panel with porous materials were higher than that of panel without porous materials.

Info-Convergence Ceramic Nanosystems

  • Jin, Wenji;Park, Dae-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.421-434
    • /
    • 2019
  • We face many fascinating and diverse challenges, the most important among which is to determine how to store a large amount of information with novel approaches. Info-convergence ceramic nanosystems, which combine ceramic materials science and information technology, may provide an attractive alternative. This review considers recent multidisciplinary advances in the development of info-convergence nanosystems based on ceramic materials and discusses various strategies under ceramic-based information systems with a special focus on materials and nanohybridization technologies. Ceramic materials have played diverse roles not only as the generic coding support, but also as the central coding substance. The review highlights the ceramic nanohybrid bio code and ceramic nanoparticle optical code for applications in tracking-and-traceability management, nano-forensics, anti-counterfeiting, and even communication, as well as the four steps of encoding, encrypting, decrypting, and decoding for the desired applications. Additionally, associated challenges, potential solutions, and perspectives for future developments in the field are discussed.

Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures

  • Bae, Chang-Jun;Ramachandran, Arathi;Chung, Kyeongwoon;Park, Sujin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • Ceramic processing to fabricate 3D complex ceramic structures is crucial for structural, energy, environmental, and biomedical applications. A unique process is ceramic stereolithography, which builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This approach directly writes layers in liquid ceramic suspension and allows one to fabricate ceramic parts and products having more accurate, complex geometries and smooth surfaces. In this paper, both UV curable materials and processes are presented. We focus on the basic material principles associated with free radical polymerization and rheological behavior, cure depth and broadening of cured lines, scattering at ceramic interface and their corresponding simulation. The immediate potentials for ceramic AM to change industry fabrication are also highlighted.

Microstructure and Properties of Yttria Film Prepared by Aerosol Deposition (에어로졸 데포지션에 의한 이트리아 필름의 미세구조와 특성)

  • Lee, Byung-Kuk;Park, Dong-Soo;Yoon, Woon-Ha;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.441-446
    • /
    • 2009
  • Dense crack-free yttria film with 10 $\mu m$ thickness was prepared on aluminum by aerosol deposition. X-ray diffraction pattern on the film showed that it contained the same crystalline phase as the raw powder. Transmission electron microscopy revealed a nanostructured yttria film with grains smaller than 100 nm. Tensile adhesion strength between the film and aluminum substrate was 57.8 $\pm$ 6.3MPa. According to the etching test with $CF_4-O_2$ plasma, the etching rate of the yttria film was 1/100 that of quartz, 1/10 that of sintered alumina and comparable to that of sintered yttria.

Trend of Ceramic Materials Technology for Beauty-care (뷰티케어용 세라믹소재기술 동향)

  • Chang, Jeong Ho
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.302-308
    • /
    • 2018
  • This work reported the trends of bioceramic materials for beauty-care applications with the several represent examples - tone-up, sun-care and anti-pollution cosmetics. The development of cosmetic techniques was discussed and reviewed with various ceramic hybrid materials. Moreover, we also reported the preparation and application of functional cosmetics with silicified liposome particles as a good make-up material for controlled release with natural compounds. The homogeneous loading and highly controlled-release formulation with porous and silicified ceramic liposome ceramic materials were discussed.

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology (바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작)

  • Mose Kwon;Jong-Han Choi;Kwang-Taek Hwang;Jung-Hoon Choi;Kyu-Sung Han;Ung-Soo Kim;Jin-Ho Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.