• Title/Summary/Keyword: Ceramic Glass

Search Result 1,308, Processing Time 0.028 seconds

The properties of optical glass of BaO-GeO2-La2O3 system with ZnO (ZnO가 포함된 BaO-GeO2-La2O3 계 광학 유리 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Lee, Youngjin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.208-214
    • /
    • 2019
  • The glass of $BaO-GeO_2-La_2O_3-ZnO$ system with a transmittance of more than 75 % at mid-wave infrared (MWIR) region in the range of $3{\mu}m$ to $5{\mu}m$ is manufactured and its property is evaluated. After selecting construction that can melt glass through flow button test, $BaO-GeO_2-La_2O_3$ system where 10 mol%, 20 mol% of ZnO were added respectively were melted at $1350^{\circ}C$ for 1 hour and $BaO-GeO_2-La_2O_3$ system of glass was manufactured. Among them, with 20 mol% of ZnO, 16 mol% BaO-56 mol% $GeO_2-8mol%$ $La_2O_3-16mol%$ ZnO system of glass was found to has less than $660^{\circ}C$ of glass transition temperature, more than 1.70 of refractive index, and more than 530 of knoop hardness. Therefore, it is concluded that glass of $BaO-GeO_2-La_2O_3-ZnO$ system of glass with 20 mol% ZnO has good melting conditions at low temperatures and excellent optical properties, thus, can be utilized for special optical materials field.

Sintering Behavior and Microwave Dielectric Propel1ies of Mg-Si-O Ceramics with Glass Frit for LTCC Substrate (Glass firt 첨가에 따른 저온 동시소성 기판용 Mg-Si-O계 세라믹스의 소결거동 및 마이크로파 유전특성)

  • Cho, Jung-Hwan;Yeo, Dong-Hun;Shin, Hyo-Soon;Kim, Jong-Hee;Nahm, Sahn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.310-310
    • /
    • 2007
  • Mg-Si-O계 세라믹스에 glass frit 조성을 첨가하여 저온에서의 소결 특성 및 마이크로파 유전 특성을 연구하였다. 기존의 Mg-Si-O계 세라믹스는 우수한 유전특성을 가지고 있으나 높은 소결온도로 인하여 LTCC용 기판 소재로 적용이 어려웠다. 본 연구에서는 MgO, $SiO_2$를 이용하여 $Mg_2SiO_4$을 합성한 후, $B_2O_3-ZnO-Na_2O-SiO_2-Al_2O_3$계 glass 조성을 20~40wt%로 첨가하여 소결온도를 감소시켜 LTCC 기판 소재로서의 적용성을 고찰하였다. glass frit 함량이 증가함에 따라 밀도($g/cm^3$) 및 유전율(${\varepsilon}_r$)은 증가하였고 품질계수($Qxf_0$)값은 감소하였다. glass frit 함량이 40wt%일때 $900^{\circ}C$에서 1시간 소결한 소결체의 유전톡성은 유전율 (${\varepsilon}_4$) = 6.5. 품질계수 ($Qxf_0$) = 4,000(GHz), 온도계수 $(\tau_t)\;=\;{\pm}\;10ppm/^{\circ}C$로 우수한 특성을 확인하였다.

  • PDF

Electrical and Adhesion Properties of Photoimageable Silver Paste with Glass Addtion

  • Lim, Jong-Woo;Kim, Hyo-Tae;Lee, Eun-Heay;Yoon, Young-Joon;Koo, Eun-Hae;Kim, Jong-Hee;Park, Eun-Tae;Lee, Jong-Myun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.208-208
    • /
    • 2008
  • Micro patterning of conductor line/space on LTCC green sheet in the LTCC module is an important process for miniaturization in 3D integrated circuits. This work presented the effect of inorganic binders on the microstructure, adhesion, electrical resistivity, shrinkage and line/space resolution, which is a part of study in photoimageable conductor paste. The photoimageable conductor paste contains silver powder, polymer binder, monomer, photo-initiator, UV absorber, and solvent. The inorganic binders were furnished with varied weight percentage of anorthite, diopside and MLS-62 glass frits from 0% to 7%. The Line/space sizes thus obtained was under 25 micron.

  • PDF

Physical Properties of Lightweight Materials According to the Replacement Ratios of the Admixture (혼합재 치환율에 따른 경량소재의 물리적 특성)

  • Jung, Yon-Jo;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.633-638
    • /
    • 2009
  • Lightweight materials were fabricated using glass abrasive sludge, bottom ash and slag powder in this study. This study tried to draw the correlation between physical properties and internal pore of lightweight material. The content of bottom ash and slag powder was from 10% to 50% and firing temperature from $760{^{\circ}C}\;to\;800{^{\circ}C}$ in rotary kiln. The lightweight material containing bottom ash or slag powder had a specific gravity of $0.21{\sim}0.70$ at particle size $2{\sim}4$ mm. Replacement ratio of the admixture increasing with specific gravity increased. Fracture strength of panel made with various lightweight materials was $32{\sim}55\;kgf/cm^2$ and flexural strength was $11{\sim}18\;kgf/cm^2$. Fracture strength increased by 72% and flexural strength was 63% compared with reference. Thermal conductivities of panel was $0.07{\sim}0.11W/m{\cdot}k$. The water absorption ratios of panel with lightweight materials containing bottom ash were $1.8{\sim}2.8$% and slag powder were $2.65{\sim}2.8$%. Excellent results on resistant of water absorption.

Fabrication of Single Layer Anti-reflection Thin Film by Sol-gel Method (Sol-gel법에 의한 단층 반사 방지막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Bae, Dong-Sik;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.821-825
    • /
    • 2015
  • Anti-reflective (AR) thin film was fabricated on a glass substrate by sol-gel method. The coating solution was synthesized with TEOS (tetraethlyorthosilicate) and poly ethylene glycol (PEG, 4.0 wt%). As the withdrawal speed of coating was changed from 0.1 mm/sec to 0.3 mm/sec, the thickness and refractive index of prepared thin films were changed. The reflectance and transmittance of coating glass fabricated by the withdrawal speed of 0.1 mm/sec were 0.62% and 95.0% in visible light range. The refractive index and thickness of single layer thin film were n= 1.29 and ca. 99.0 nm.

The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

  • Yavuz, Tevfik;Eraslan, Oguz
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • PURPOSE. To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS. 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with $60^{\circ}C$ heat-treatment), and G4 (silane alonethen dried with $100^{\circ}C$ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in $N/mm^2$). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin-ceramic interface. RESULTS. SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION. The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.