• 제목/요약/키워드: Ceramic Adhesion

검색결과 204건 처리시간 0.031초

센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구 (Additive Manufacturing for Sensor Integrated Components)

  • 정임두;이민식;우영진;김경태;유지훈
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Fly Ash 및 Meta-Kaolin을 활용한 내화성 마감재의 고온특성 (High Temperature Properties of Fire Protection Materials Using Fly Ash and Meta-Kaolin)

  • 송훈;추용식;이종규;도정윤
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.223-231
    • /
    • 2010
  • The serious issue of tall building is to ensure the fire-resistance of high strength concrete. The fire resistant finishing method is necessarily essential in order to satisfy the fire resistance time of 3 h required by the law. The fire resistant finishing method is installed by applying a fire resistant material as a method of shotcrete or a fire resistant board to high strength concrete surface. This method can reduce the temperature increase of the reinforcement embedded in high strength concrete at high temperature due to the installation thickness control. This study is interested in identifying the effectiveness of inorganic alumino-silicate compounds including the inorganic admixture such as fly ash and meta-kaolin as the fire resistant finishing materials through the analysis of fire resistance and components properties at high temperature. The study results show that the fire resistant finishing material composed of fly ash and meta-kaolin has the thermal stability of the slight decrease of compressive strength at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate. Inorganic compounds composed of fly ash and meta-kaolin is evaluated to be very effective as the fire resistance material for finishing to protect the concrete substrate by the reason of those simplicity in both application and manufacture. The additional study about the adhesion in the interface with concrete substrate is necessary for the purpose of the practical application.

무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조 (Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers)

  • 박준홍;팜안뚜앙;이재종;김동표
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.407-411
    • /
    • 2006
  • 액상의 고분자 전구체 polyvinylsilazane (PVS) 혹은 allylhydridopolycarbosilane(AHPCS)를 실리콘 기판 위에 스핀 코팅한 다음, DVD 마스터로부터 제조된 polydimethylsiloxane(PDMS) 몰드를 이용한 자외선 나노임프린트법으로 나노 크기의 고분자 패턴을 제조하였다. 나아가 질소 분위기하에서 $800^{\circ}C$ 열처리함으로써 각각 SiCN, SiC 세라믹 패턴도 제조하였다. 가교된 고분자와 세라믹 패턴의 폭과 넓이를 원자힘현미경(AFM)과 주사전자현미경(SEM)으로 관측한 결과 PVS와 AHPCS의 패턴 높이는 각각 38.5%와 24.1%, 패턴 폭은 18.8%와 16.7%의 수축률을 나타내었다. 즉 전구체의 세라믹 수율이 높을수록 세라믹 패턴 수축률은 낮아졌고, 패턴과 기판과의 접착에 의한 수축억제로 이방성 수축현상도 관찰되었다. 본 연구결과는 새로운 세라믹 MEMS 소자제작공정으로서 나노임프린트법의 가능성과 수축률 제어 연구가 필요함을 제시하고 있다.

실리카-이산화티탄 복합 코팅층의 열적, 화학적 안정성 및 인쇄적성 평가 (Printability of Thermally and Chemically Stable Silica-Titanium Dioxide Composite Coating Layer)

  • 김혜진;한규성;황광택;남산;김진호
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.631-638
    • /
    • 2019
  • As automation systems become more common, there is growing interest in functional labeling systems using organic and inorganic hybrid materials. Especially, the demand for thermally and chemically stable labeling paper that can be used in a high temperature environment above $300^{\circ}C$ and a strong acid and base atmosphere is increasing. In this study, a composite coating solution for the development of labeling paper with excellent thermal and chemical stability is prepared by mixing a silica inorganic binder and titanium dioxide. The silica inorganic binder is synthesized using a sol-gel process and mixed with titanium dioxide to improve whiteness at high-temperature. Adhesion between the polyimide substrate and the coating layer is secured and the surface properties of the coating layer, including the thermal and chemical stability, are investigated in detail. The effects of the coating solution dispersion on the surface properties of the coating layer are also analyzed. Finally, it is confirmed that the developed functional labeling paper showed excellent printability.

플라즈마 디스플레이용 투명 유전체 페이스트의 개발 (Development of transparent dielectric paste for PDP)

  • 김형종;정용선;주경;오근호
    • 한국결정성장학회지
    • /
    • 제9권1호
    • /
    • pp.50-54
    • /
    • 1999
  • 플라즈마 디스플레이는 후막기술을 이용하여 화면의 크기를 늘리는 것이 쉽기 때문에 고선명 TV의 가장 유력한 후보이다. 본 연구에서는 플라즈마 디스플레이용 유전체의 조건을 만족하는 lead borosilicate 유리를 이용한 투명 유전체 재료를 개발하였다. 또한 이 유리를 이용하여 페이스트를 제조하였다. 페이스트는 스크린 프린팅에 적합한 요변성을 나타내었고, 입자 크기가 작아질수록 더욱 강한 요변성을 나타내었다. 열처리 후 후막의 파단면을 전자현미경으로 관찰하였다. 후막의 기공은 서로 다른 크기의 평균입경을 갖는 powder를 사용함으로써 제거 될 수 있었다. 소성된 후막은 좋은 융착 특성을 나타내었다.

  • PDF

세라믹메탈재를 적용한 RC보의 보강공법에 관한 실험적 연구 (Experimental Study on the Strengthening Method of RC Beam Using Ceramic Metal)

  • 심낙훈;박영석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권4호
    • /
    • pp.115-122
    • /
    • 2004
  • 본 연구에서는 강화보드, 익스팬디드 메탈 그리고, 탄소섬유그리드의 세 가지 보강재와 덮개 콘크리트 대용의 세라믹메탈재를 사용하여 RC보의 인장측을 보강한 경우에 그 보강효과를 파악하기 위한 구조실험을 수행하였다. 구조실험을 통하여 RC보 구조물에서 세라믹메탈재의 부착성능을 평가하였고, 각 보강방법에 대한 강성 증가 효과와 항복 후의 연성 증진 효과를 파악하였다. 그리고, 각 시험체의 실험 결과에 대한 비교를 통하여 더 나은 보강효과를 발휘할 수 있는 방안을 제시하였다.

용융금속에 의한 Ceramic Oxides에서의 Wetting에 관한 연구 (A Stydy on the Wetting of Ceramic Oxides by Molten Metal)

  • 이석권;임응극;김환
    • 한국세라믹학회지
    • /
    • 제20권4호
    • /
    • pp.289-296
    • /
    • 1983
  • The Wetting of fusion cast $Al_2O_3$ brick and $Al_2O_3 -ZrO_2$ brick by liquid Ag was studied by the sessile drop technique in Ar atmosphere. In this experiment the specimens were photographed per 2$0^{\circ}C$with increasing temperature from 96$0^{\circ}C$ melting point of Ag. And the method of photographing was carried out by shadow technique. The cosine of the contact angle increased linearly with increasing temperature in both systems. And the relation between the cosine of the contact angle and the temperature was Cos$\theta$=1.132+$0.75{\times}10^{-3}T$ for $Al_2O_3$ brick and Cos$\theta$=-1.706+$1.125{\times}10^{-3}T$ for $Al_2O_3 -ZrO_2$ brick In both systems the contact angle decreased as the surface of substrate became smoother. The work of adhesion which was 503.5ergs/$cm^2$ for $Al_2O_3$brick and 393.6 ergs/cm2 for $Al_2O_3 -ZrO_2$ brick at 96$0^{\circ}C$ increased parabolically with increasing temperature in both system.

  • PDF

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

The Mechanical and Optical Properties of Diamond-like Carbon Films on Buffer-Layered Zinc Sulfide Substrates

  • Song, Young-Silk;Song, Jerng-Sik;Park, Yoon
    • The Korean Journal of Ceramics
    • /
    • 제4권1호
    • /
    • pp.9-14
    • /
    • 1998
  • Diamond-like carbon(DLC) films were deposited on buffer-layered ZnS substrates by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) method. Ge and GeC buffer layera were used between DLC and ZnS substrates to promote the adhesion of DLC on ZnS substrates. Ge buffer layers were sputter deposited by RF magnetron sputtering and $GeC^1$ buffer layers were deposited by same method except using acetylene reactive gas. The relatinship between film properties and deposition conditions was investigated using gas pressure, RF power and dc bias voltage as PECVD parameters. The hardness of DLC films were measured by micro Vickers hardness test and the adhesion of DLC films on buffer-layered ZnS substrates were studied by Sebastian V stud pull tester. The optical properties of DLC films on butter-layered ZnS substrates were characterized by ellipsometer and FTIR spectroscopy.

  • PDF