• 제목/요약/키워드: Centrifugal casting

검색결과 79건 처리시간 0.073초

코발트 크롬 합금의 주조성에 미치는 타이타늄의 효과 (The Effect of Titanium on the Castability of Cobalt-Chrome Alloy)

  • 유수경;정희정;방몽숙;양홍서;임현필;윤귀덕;박상원
    • 구강회복응용과학지
    • /
    • 제27권1호
    • /
    • pp.73-79
    • /
    • 2011
  • 연구의 목적은 타이타늄이 함유된 코발트 크롬의 주조성에 타이타늄이 어떠한 영향을 미치는지 평가하기 위함이다. 원재료에는 코발트, 크롬, 몰리브덴, 실리콘, 망간, 탄소, 질소, 티타늄이 사용되었고 이것들을 정량계량하였다. $Biosil^F$ (Degudent, Germany)를 대조군으로 하였고, 실험군에는 티타늄을 1 wt% 에서 4 wt% 까지 각기 다른 함량으로 첨가하여 주조성을 평가하였다. 왁스 패턴은 $30{\times}40$ cm 크기의 직사각형 모양으로, 총 160개의 격자를 함유하고 있다. 원심주조기 (Neutrodyne Easy Ti: Manfredy)를 사용하여 왁스패턴을 주조하였다. 주조성의 평가는 왁스패턴의 4면이 완전한 격자의 수를 육안과 X-ray를 이용하여 검사하였다. 1 wt%에서 3 wt%의 티타늄을 함유한 금속은 대조군과 비슷한 주조성을 나타냈다. 4 wt%의 티타늄을 함유한 금속은 좋지 않은 결과를 보였다. 4 wt% 미만의 티타늄 함유한 실험군의 주조성은 대조군과 비슷하면서도 기계적인 물성은 증가됨을 보였으며 임상에서의 성공적인 사용을 가능케 한다.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성 (MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY)

  • 윤미경;김현승;양홍서;방몽숙;박상원;박하옥;이광민
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

CERAMIC INLAY RESTORATIONS OF POSTERIOR TEETH

  • Jin, Myung-Uk;Park, Jeong-Won;Kim, Sung-Kyo
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2001년도 춘계학술대회
    • /
    • pp.235-237
    • /
    • 2001
  • ;Dentistry has benefited from tremendous advances in technology with the introduction of new techniques and materials, and patients are aware that esthetic approaches in dentistry can change one's appearance. Increasingly. tooth-colored restorative materials have been used for restoration of posterior teeth. Tooth-colored restoration for posterior teeth can be divided into three categories: 1) the direct techniques that can be made in a single appointment and are an intraoral procedure utilizing composites: 2) the semidirect techniques that require both an intraoral and an extraoral procedure and are luted chairside utilizing composites: and 3) the indirect techniques that require several appointments and the expertise of a dental technician working with either composites or ceramics. But, resin restoration has inherent drawbacks of microleakage. polymerization shrinkage, thermal cycling problems. and wear in stress-bearing areas. On the other hand, Ceramic restorations have many advantages over resin restorations. Ceramic inlays are reported to have less leakage than resin restoration and to fit better. although marginal fidelity depends on technique and is laboratory dependent. Adhesion of luting resin is more reliable and durable to etched ceramic material than to treated resin composite. In view of color matching, periodontal health. resistance to abrasion, ceramic restoration is superior to resin restorationl. Materials which have been used for the fabrication of ceramic restorations are various. Conventional powder slurry ceramics are also available. Castable ceramics are produced by centrifugal casting of heat-treated glass ceramics. and machinable ceramics are feldspathic porcelains or cast glass ceramics which are milled using a CAD/CAM apparatus to produce inlays (for example, Cered. They may also be copy milled using the Celay apparatus. Pressable ceramics are produced from feldspathic porcelain which is supplied in ingot form and heated and moulded under pressure to produce a restoration. Infiltrated ceramics are another class of material which are available for use as ceramic inlays. An example is $In-Ceram^{\circledR}$(Vident. California, USA) which consists of a porous aluminum oxide or spinell core infiltrated with glass and subsequently veneered with feldspathic porcelain. In the 1980s. the development of compatible refractory materials made fabrication easier. and the development of adhesive resin cements greatly improved clinical success rates. This case report presents esthetic ceramic inlays for posterior teeth.teeth.

  • PDF

Cu-7Al-2.5Si 합금의 기계적 및 내식특성에 미치는 열처리 효과 (Effect of the Heat Treatment on the Mechanical Property and Corrosion Resistance of CU - 7Al - 2.5Si Alloy)

  • 이성열;원종필;박동현;문경만;이명훈;정진아;백태실
    • Corrosion Science and Technology
    • /
    • 제13권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Recently, the fuel oil of diesel engines of marine ships has been increasingly changed to heavy oil of low quality as the oil price is getting higher and higher. Therefore, the spiral gear attached at the motor of the oil purifier which plays an important role to purify the heavy oil is also easy to expose at severe environmental condition due to the purification of the heavy oil in higher temperature. Thus, the material of the spiral gear requires a better mechanical strength, wear and corrosion resistance. In this study, the heat treatment(tempering) with various holding time at temperature of $500^{\circ}C$ was carried out to the alloy of Cu-7Al-2.5Si as centrifugal casting, and the properties of both hardness and corrosion resistance with and without heat treatment were investigated with observation of the microstructure and with electrochemical methods, such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram, and a.c. impedance. in natural seawater solution. The ${\alpha}$, ${\beta}^{\prime}$ and ${\gamma}_2$ phases were observed in the material in spite of no heat treatment due to quenching effect of a spin mold. However, their phases, that is, ${\beta}^{\prime}$ and ${\gamma}_2$ phases decreased gradually with increasing the holding time at a constant temperature of $500^{\circ}C$. The hardness more or less decreased with heat treatment, however its corrosion resistance was improved with the heat treatment. Furthermore, the longer holding time, the better corrosion resistance. In addition, when the holding time was 48hrs, its corrosion current density showed the lowest value. The pattern of corroded surface was nearly similar to that of the pitting corrosion, and this morphology was greatly observed in the case of no heat treatment. It is considered that ${\gamma}_2$ phase at the grain boundary was corroded preferentially as an anode. However, the pattern of general corrosion exhibited increasingly due to decreasing the ${\gamma}_2$ phase with heat treatment. Consequently, it is suggested that the corrosion resistance of Cu-7Al-2.5Si alloy can be improved with the heat treatment as a holding time for 48 hrs at $500^{\circ}C$.

침적법과 전기화학법을 이용한 티타늄의 갈바닉 부식에 관한 연구 (A STUDY ON THE GALVANIC CORROSION OF TITANIUM USING THE IMMERSION AND ELECTROCHEMICAL METHOD)

  • 계기성;정재헌;강동완;김병옥;황호길;고영무
    • 대한치과보철학회지
    • /
    • 제33권3호
    • /
    • pp.584-609
    • /
    • 1995
  • The purpose of this study was to evaluate the difference of the galvanic corrosion behaviour of the titanium in contact with gold alloy, silva-palladium alloy, and nickel-chromium alloy using the immersion and electrochemical method. And the effects of galvallit couples between titanium and the dental alloys were assessed for their usefulness as materials for superstructure. The immersion method was performed by measuring the amount of metal elementsreleased by Inductivey coupled plasma emission spectroscopy(ICPES) The specimen of fifteen titanium plates, the five gold alloy, five silver-palladium, five nickel-chromium plates, and twenty acrylic resin plates ware fabricated, and also the specimen of sixty titanium plugs, the thirty gold alloy, thirty silver-palladium, and nickelc-hromium plugs were made. Thereafter, each plug of gold alloy, silver-palladium, and nickel-chromium inserted into the the titanium and acrylic resin plate, and also titanium plug inserted into the acrylic resin plate. The combination specimens uf galvanic couples immersed in 70m1 artificial saliva solution, and also specimens of four type alloy(that is, titanium, gold, silver-palladium and nickel-chromium alloy) plugs were immersed solely in 70m1 artificial sativa solution. The amount of metal elements released was observed during 21 weeks in the interval of each seven week. The electrochemical method was performed using computer-controlled potentiosta(Autostat 251. Sycopel Sicentific Ltd., U.K). The wax patterns(diameter 11.0mm, thickness,in 1.5mm) of four dental casting alloys were casted by centrifugal method and embedded in self-curing acrylic resin to be about $1.0cm^2$ of exposed surface area. Embedded specimens were polished with silicone carbide paper to #2,000, and ultrasonically cleaned. The working electrode is the specimen of four dental casting alloys, the reference electrode is a saturated calmel electrode(SCE) and the ounter electrode is made of platinum plate. In the artificial saliva solution, the potential scanning was carried out starting from-700mV(SCE) TO +1,000mV(SCE) and the scan rate was 75mV/min. Each polarization curve of alloy was recorded automatically on a logrithmic graphic paper by XY recorder. From the polarization curves of each galvanic couple, corrosion potential and corrosion rates, that is, corrosion density were compared and order of corrosion tendency was determined. From the experiments, the following results were obtained : 1. In the case of immersing titanium, gold alloy, silver-palladium alloy, and nickel-chromium alloysolely in the artificial saliva solution(group 1, 2, 3, and 4), the total amount of metal elements released was that group 4 was greater about 2, 3 times than group 3, and about 7.8 times than group 2. In the case of group 1, the amount of titanium released was not found after 8 week(p<0.001). 2. In the case of galvanic couples of titanium in contact with alloy(group 5, 6), the total amount of metal elements released of group 5 and 6 was less than that of group 7, 8, 9, and 10(p<0.05). 3. In the case of galvanic couples of titanium in contact with silver-palladium alloy(group 7, 8), the total amount of metal elements released of group 7 was greater about twice than that of group 5, and that of group 8 was about 14 times than that of group 6(p<0.05). 4. In the case of galvanic couples of titanium in contact with nickel-chromium alloy(group 9, 10), the total amount of metal elements released of group 9 and 10 was greater about 1.8-3.2 times than that of group 7 and 8, and was greater about 4.3~25 times than that of group 5 and 6(p<0.05). 5. In the effect of galvanic corrosion according to the difference of the area ratio of cathode and anode, the total amount of metal elements released was that group 5 was greater about 4 times than group 6, group 8 was greater about twice than group 7, and group 10 was greater about 1.5 times than group 9(p<0.05). 6. In the effect of galvanic corrosion according to the elasped time during 21 week in the interval of each 7 week, the amount of metal elements released was decreased markedly in the case of galvanic couples of the titanium in contact with gold alloy and silver-palladium alloy but the total amount of nickel and beryllium released was not decreased markedly in the case of galvanic couples of the titanium in contact with nickel-chromium alloy(p<0.05). 7. In the case of galvanic couples of titanium in contact with gold alloy, galvanic current was lower than any other galvanic couple. 8. In the case of galvanic couples of titanium in contact with nickel-chromium alloy, galvanic current was highest among other galvanic couples.

  • PDF

Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性) (The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu)

  • 배봉진;이화식;이기대
    • 대한치과기공학회지
    • /
    • 제20권1호
    • /
    • pp.37-49
    • /
    • 1998
  • 실용치과재료로 사용되고 있는 Ag-Pd-Cu 3 원계 합금의 시효석출과정을 Pd 및 Cu의 용질 농도의 조성비가 약 1.7인 합금과 이 합금에서 2wt%Au의 첨가합금에 미치는 영향을 조사 분석하여 아래와 같은 결론을 얻었다. Ag-25Pd-15Cu 3원 합금은 ${\alpha}$의 단일상에서 ${\alpha}_1$ (Cu-rich), ${\alpha}_2$(Ag-rich) 및 PdCu 규칙상에 의해서 경화반응이 진행되며 연속승온시효에 의하면 $100{\sim}300^{\circ}C$의 저항증가와 $300{\sim}500^{\circ}C$의 저항감소라고 하는 2단계 변화에 의해서 경화곡선이 얻어졌다. 또한 본 합금의 시효과정은 ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu{\to}{\alpha}_1+{\alpha}_2+PdCu$이고 2상분리 반응에 경화되며 최고경화는 ${\alpha}_1,\;{\alpha}_2$ 및 PdCu 규칙상의 혼합영역에서 나타났다. 이들 석출반응은 입계반응이고 반응의 진행과 함께 경도값은 상승하고 경화촉진에 기여하였다. 또한 Nodule은 미세한 lamella조직을 나타내고 이들 ${\alpha}_2$와 PdCu상과의 미세한 혼합상의형성이 시효경화에 기여하는 주된 원인이 되었다. 과시효는 lamella의 조대화와 PdCu상의 ${\alpha}2$상으로의 용해에 따른 정량적 감소에 대응하였다. 석출상은 thin lamella구조의 잘 방위된 미세한 판상석출물로서 이들 미세 판상석출물은 AuCu($L1_0$)type의 face-centered tetragonal(fct)의 초격자구조였다. 규칙화된 미세한 판상석출물은 stair-step mode로서 twinning에 의해 형성되며 이것은 시효에 의해 $L1_0$ type의 PdCu 규칙상과 같은 초격자 형성시 정방비틀림 때문이라고 생각된다. 이들 twinning lamella는 귀금속원소에 의해 형성된 $L1_0$ type의 PdCu 규칙상과 같기 때문에 이들 합금의 부식저항에도 기여하였다. Ag-25Pd-15Cu합금은 전반적으로 양호한 내식성을 나타내며 Pd.Cu=1인 합금에서보다도 Pd함량이 높은 Pd/Cu=1.7에서 내식성이 보다 우수한 것은 Pd 함량이 내식성에 기여하였고 2%Au의 첨가에 의해서 부식성을 개선할 수 있었다.

  • PDF

Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性) (The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy)

  • 이기대;남상용
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.27-41
    • /
    • 1999
  • 치과용 Ag기 합금에서 30wt%Pd 및 10wt%Cu의 용질농도의 구성비가 3이 되는 3원 합금과 여기에 2wt% Au의 첨가에 미치는 석출상의 영향을 조사 분석하여 아래와 같은 결론을 얻었다. Ag-Pd-Cu 3원 합금은 $\alpha$ 단일상에서 Ag-rich ${\alpha}_2 $ 및 PdCu 규칙상에 의해서 경화반응이 진행되며 연속승온시효곡선에 의하면 100-$300^{\circ}C$의 저항증가와 300-$500^{\circ}C$의 저항감소라고 하는 2단계 변화에 의해서 경화곡선이 얻어졌다. 또한 본 합금의 시효과정에서는 ${\alpha}{\to}{\alpha}_2+PdCu{\to}$의 2상 분리반응에 의하여 경화원인이 되었다. 석출과정은 ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ 이고 Cu-rich인 ${\alpha}_2$상은 거의 나타나지 않으며 최고 경도값은 ${\alpha}_2$ 및 PdCu의 2상공존 구역에서 나타났다. 미량의 Au첨가에 의해서 경화는 다소 증가하지만 경화성보다는 내식성에 보다 크게 기여하였고 Pd/Cu=3인 합금은 Pd/Cu=1 또는 1.7의 합금보다도 전반적으로 경도값은 가장 낮게 나타나며 이것은 치과용 Ag기 합금의 시효경화성에는 Cu농도가 크게 기여하였다. 불연속석출물인 nodule 생성물은 입계에 우선 형성되어 $\alpha$ matrix로 진행되어 nodule 석출물은 부드러운 경계면을 가지고 $\alpha$ matrix주위에 strain matrix를 나타내므로 nodule 형성이 본 합금의 시효경화를 야기하였다. 내식성은 Pd 함량이 가장 높은 본 합금에서 매우 양호하게 나타났으며 Pd 함량이 증가가 내식성의 향상에 크게 기여하여 미량의 Au 첨가에 의해서 보다 현저히 효과를 얻었다. 본 합금의 시효열처리 조건은 $450^{\circ}C$ 적절하며 1-120min 시효시간에 걸쳐서 소정의 경도 값을 얻을 수 있고 시효경화성 및 내식성의 결과로부터 Ag-30wt%Pd-10wt%Cu합금 및 미량 Au 합금은 치과용 금속재료로 적합하였다.

  • PDF

Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性) (The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu)

  • 박명호;배봉진;이화식;이기대
    • 대한치과기공학회지
    • /
    • 제19권1호
    • /
    • pp.21-35
    • /
    • 1997
  • Au 함량이 20% 미만인 Au-Ag-Pd합금의 기초합금인 Ag-Pd-Cu 3원계 합금의 시효경화 특성을 규명할 목적으로 20wt% Pd 및 20wt% Cu의 용질농도구성비가 1이 되는 3원 합금과 여기에 2wt% Au의 첨가합금에 미치는 석출상의 영향을 분석, 조사하여 아래와 같은 결론을 얻었다. Ag-20wt% Pd-20wt% Cu 3원 함금은 ${\alpha}$의 단일상에서 Ag-rich의 ${\alpha}2$상 및 PdCu규칙상에 의하여 경화반응이 진행되며 연속승온과정에서 $100{\sim}300^{\circ}C$의 경도증가와 $300{\sim}500^{\circ}C$의 경도감소의 2단계 경화특성이 얻어졌다. 연속승온시효과정은 Au첨가에 관계없이 2단계의 석출반응이 저온영역에서는 stage I, stage II로 나타나고 stage I은 고온에서의 소입에 의해 도입된 과잉공공의 이동 및 소멸에 의한 반응이고 stage II는 평형농도의 공공확산에 의한 반응에 대응하였다. 또한 본 합금의 시효석출과정은 ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}_1+{\alpha}_2+PdCu$이고 최대 경화는 ${\alpha}_1,\;{\alpha}_2$, PdCu의 3상공존구역에서 나타났다. 이들 석출반응은 입계반응이고 반응의 진행과 함께 경도값은 상승하며 경화능에 직접적으로 기여하였다. 또한 석출상은 미세한 lamella조직의 nodule을 나타내고 이들 ${\alpha}_1,\;{\alpha}_2$ 및 PdCu상과의 미세한 혼합상의 형성이 시효경화능에 기여하는 주된 원인이 되었다. 과시효는 lamella의 조대화와 PdCu상의 ${\alpha}_2$상으로의 용해에 따른 정량적 감소에 대응하였다. 본 합금의 시효열처리 온도는 $450^{\circ}C$가 적절하며 $1{\sim}120min$ 시효시간에 걸쳐서 소정의 경화특성을 얻을 수 있었다.

  • PDF