• 제목/요약/키워드: Centrifugal

검색결과 1,669건 처리시간 0.028초

원심형 송풍기에 있어서 전향익과 후향익의 특성 차이에 관한 연구 (Study on Difference of Characteristics between Backward and Forward Blades in Centrifugal Blower)

  • 김재원;박진원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.165-170
    • /
    • 2003
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower. Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. The reason is due to larger velocity from the rotating forward blades and the tendency is validated by a parallel experiment with a wind tunnel. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offers deep understanding of a centrifugal blower with different blades.

  • PDF

볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 - (Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape -)

  • 진현배;김명진;손창호;정의준
    • 한국유체기계학회 논문집
    • /
    • 제16권4호
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어 (3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control)

  • 강동희;김나경;강현욱
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

기액이상류 원심분리기의 성능개선에 관한 연구 (A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow)

  • 김진만;이준희;윤용관;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF

통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측 (Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model)

  • 허승;김대환;정철웅;김태훈
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

작은 안내 깃이 붙은 원심형 임펠러의 소음 특성에 대한 연구 (A numerical study on the acoustic characteristics of centrifugal impeller with small added vane)

  • 전완호
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.22-29
    • /
    • 2001
  • Centrifugal fans are widely used in industrial practices but the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the easing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권3호
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구 (A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System)

  • 최재호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

수치해석에 의한 소형 원심팬 개발 (Development of a Small Centrifugal Fan with CFD)

  • 지선구;박성관
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.11-16
    • /
    • 2001
  • It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.

  • PDF

극저비속도 원심펌프의 펌프성능 및 흡입성능 향상 (Improvement of Pump Performance and Suction Performance of a Very Low Specific Speed Centrifugal Pump)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.29-35
    • /
    • 2006
  • There are high expectations of improving the performance of a centrifugal pump in the range of very low specific speed which has been developed recently for the use instead of a conventional positive displacement pump. However, even though elaborated studies has been done for the pump intensively, the pump performance has not increased so much. Also, it is difficult to find detailed information from published literatures for suction performance of the very low specific speed centrifugal pump. Therefore, this study is aimed to improve the pump performance more and to make clear suction performance of the very low specific speed centrifugal pump. Recircular flow stopper is installed on the pump casing wall at the region of impeller outlet to improve the pump performance and J-Groove is also installed at the inlet of the pump casing for the purpose of suppressing occurrence of cavitation as well as improving pump performance. The result suggests that the simultaneous improvement of pump performance and suction performance of the very low specific speed centrifugal pump is possible by adopting optimum configuration of the recirculation flow stopper and J-Groove.