• 제목/요약/키워드: Central air conditioning system

검색결과 62건 처리시간 0.028초

급속분리커플링으로 연결된 에어컨의 운전성능에 관한 실험적 연구 (A Study on Performance of Air-condition Linked by Quick Disconnect Coupling)

  • 조수;이수열;성욱주;박희문;심경종;김우승
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.551-556
    • /
    • 2008
  • This study analyzed operation characteristics of air-condition piping is made by quick disconnect coupling. Air-conditioning consists of central compressor 3HP capacity and R22 refrigerant. We experimented with two operation cycles of air-condition under the same environment; one is with quick disconnect coupling. The other is without quick disconnect coupling. As a result, we can observe whether the condensation temperature of former increased by about 3-5. Furthermore, COP decreased by about 10%.

  • PDF

실외기 토출 유량 증대를 위한 Shroud 형상 및 휀 위치 최적 설계 (Optimization of Shroud Shape and Fan Location for Increasing Exhaust Flow Rate of Air Conditioner Outdoor Unit)

  • 유기정;김유일;이관수;차우호
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.599-605
    • /
    • 2009
  • This paper presents a numerical evaluation of the flow rate of air conditioner outdoor unit by investigating the effects of fan location and shroud shape. To determine optimal design parameters, we investigated the exhaust flow rate by changing shroud height, fan height, fan guide height, and fan width. The 3rd order central composite design was performed to select three most important parameters affecting the exhaust flow rate. According to the result of response surface method, the exhaust flow rate of the optimum model increased by 6.25% compared to that of the base model.

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF

건축물 냉.난방 시스템에 따른 에너지 소비 특성 -서울 소재 A 대학교 건축물을 중심으로- (The Energy Consumption Characteristics of Building Accordance with Air-Conditioning and Heating System)

  • 박강현;차정훈;김수민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.333-337
    • /
    • 2011
  • Central control air-conditioning systems are being replaced with individually controlled air-conditioning system in the university. The amount of growth of electricity consumption is due to the increasing demand of electric heat pump. In winter and summer, the energy consumption showed a tendency to increase. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because electric heat pump, gas driven heat pump and the absorption chiller-heater are used at the same time in some of the buildings.

  • PDF

냉동시스템의 운전조건에 따른 열교환기 내장형 어큐뮬레이터의 성능 특성 (Performance Characteristics of Accumulator Heat Exchangers with Operating Conditions of a Refrigeration System)

  • 강훈;박차식;전종욱;김용찬
    • 설비공학논문집
    • /
    • 제18권12호
    • /
    • pp.984-991
    • /
    • 2006
  • The applications of multi air-conditioners into multiplex and high-rise buildings have been increased by replacing central air-conditioning systems. The pipe length and altitude difference between the indoor and outdoor units can be increased based on installation conditions, which may increase the possibility of flash gas generation at the expansion device inlet. The flash gas generation causes rapid reduction of refrigerant flow rate passing through the expansion device, yielding lower system efficiency. Accumulator heat exchangers have been widely used in multi air-conditioners in order to minimize flash gas generation and obtain system reliability. However, the studies on the heat transfer characteristics and pressure drops of accumulator heat exchangers are very limited in open literature. In this study, the heat transfer rates and pressure drops of accumulator heat exchangers were measured with refrigerant flow rate and operating conditions by using R-22. The heat transfer rate increased with the increase of refrigerant flow rate, while subcooling decreased. The heat transfer rate enhanced with the reduction of inlet superheat and subcooling due to the increased temperature difference between the accumulator and inner heat exchanger.

데이터센터에 적용된 외기도입 냉방시스템에서 필터유형별 에너지 소비량 변화 (Energy Consumption Analysis based on Filter Differential Pressure when Adopting an Air-side Economizer System for a Data Center)

  • 박성현;서장후;정용호;장현재;황석호
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.371-376
    • /
    • 2013
  • Recently, many studies related to reducing the energy consumption in data centers have been conducted. These studies have mainly focused on the air intake and exhaust system of a computer room air handling unit (CRAH) in the server room, diffuser type, suppression and discharge of the heat generated from the server, and the air-side economizer system. In this study, the energy consumption of the conventional central chilled water cooling system is compared with the energy consumption of the air-side economizer system. We also examined how changes of differential pressure by each filter have influenced energy consumption, using the power usage effectiveness (PUE). Results show that the PUE was improved, and energy consumption decreased, by applying the air-side economizer system.

중앙냉방시스템의 준최적 설정점제어기법 구현에 관한 연구 (An Implementation for Near-Optimal Set Point Control for Central Cooling Systems)

  • 백승재;송재엽;안병천;주영덕;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.46-51
    • /
    • 2007
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air temperature and chilled water temperature. This study has been done by using LapVIEW program with PID control in order to analyze the central cooling system energy saving.

  • PDF

대학교 건축물의 에너지소비 특성 및 변화 추이 분석:서울소재 A대학교의 에너지 소비 실태를 중심으로 (Analysis of Energy Consumption of Buildings in the University)

  • 박강현;김수민
    • 설비공학논문집
    • /
    • 제23권9호
    • /
    • pp.633-638
    • /
    • 2011
  • Increasing demand for comfortable indoor environment and air-conditioning demand is also increasing. Building energy consumption in university which is made up of many different kinds factor was researched. Central control air-conditioning systems are being replaced with individually controlled air-conditioning system. The amount of growth of electricity consumption is due to the increasing demand of EHP. Conversely, the demand for absorption chiller-heater is shrinking. Winter and in summer a lot of electricity and gas usage. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because EHP and the absorption chiller-heater are used at the same time in some of the buildings. To use energy efficiently is needed additional research about environmental impact, economic evaluation.

대학교 강의실 EHP 제어를 이용한 에너지 절약 시스템 (Energy Saving System of EHP Control at the College Lecture Room)

  • 정기범
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.167-174
    • /
    • 2014
  • Heating and air conditioning system is changing rapidly from the traditional HVAC central supply system to the individual supply system with electrical heat pump system (EHP) in Korean school buildings. The individual supply system has advantages to turn on and off individually and to adjust the thermal comfort separately, but energy is wasted in the unoccupied classroom when the last leaving occupant does not turn off the controller. If the controller is to be off automatically while the classroom is not in use, energy consumption would decrease dramatically. This project aims to cease the unnecessary EHP supply in vacant classroom by inputting the class schedule from the central control room to reduce the energy-spending. Experimental measurements were carried out between the controlled classroom that is turned off when not in use and the uncontrolled room that is turned on continually. Occupant's comfort and energy consumption were measured and compared between the controlled case and the uncontrolled case. The energy consumption of controlled classroom case is 30-60% less than that of the uncontrolled classroom case. This result shows that controlling the cooling supply for the unoccupied classroom using the class schedule can decrease the energy consumption remarkably. This supply control system can be used to conserve energy in school structures like universities.

실내 급.배기구 위치변화에 따른 실 공기유동에 관한 연구 (A Study on the Indoor Airflow Pattern by Changing the Location of Mechanical Terminal Unit)

  • 최정민;조성우
    • 설비공학논문집
    • /
    • 제21권3호
    • /
    • pp.193-200
    • /
    • 2009
  • The ventilation system of apartments can be divided by supply and exhaust fan, supply fan and exhaust free and supply free and exhaust fan. Recently, the individual ventilation system and central ventilation system which is combined cooling system with duct system are applied to apartment ventilation system. The airflow pattern is affected by location of supply unit and exhaust unit in indoor. This study is to investigate the proper distance between supply unit and exhaust unit using CFD. As a result of this study, the proper distance between supply unit and exhaust unit could be suggested at the interval of 3 m in supply and exhaust fan system and 2.5 m in supply fan and exhaust free.