• Title/Summary/Keyword: Central Moment

Search Result 155, Processing Time 0.038 seconds

Tutorial: Dimension reduction in regression with a notion of sufficiency

  • Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2016
  • In the paper, we discuss dimension reduction of predictors ${\mathbf{X}}{\in}{{\mathbb{R}}^p}$ in a regression of $Y{\mid}{\mathbf{X}}$ with a notion of sufficiency that is called sufficient dimension reduction. In sufficient dimension reduction, the original predictors ${\mathbf{X}}$ are replaced by its lower-dimensional linear projection without loss of information on selected aspects of the conditional distribution. Depending on the aspects, the central subspace, the central mean subspace and the central $k^{th}$-moment subspace are defined and investigated as primary interests. Then the relationships among the three subspaces and the changes in the three subspaces for non-singular transformation of ${\mathbf{X}}$ are studied. We discuss the two conditions to guarantee the existence of the three subspaces that constrain the marginal distribution of ${\mathbf{X}}$ and the conditional distribution of $Y{\mid}{\mathbf{X}}$. A general approach to estimate them is also introduced along with an explanation for conditions commonly assumed in most sufficient dimension reduction methodologies.

SOME RESULTS OF MOMENTS IN MULTIVARIATE STATISTICAL DISTRIBUTION

  • Chul Kang;Park, Sang-Don
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.323-334
    • /
    • 2003
  • We review the developmental history of the moment matrix of matrix quadratic form. This paper also investigates, the moment matrix of (non-central) Wishart distribution, which is multi-version of X$^2$ distribution.

A Central Limit Theorem for Linearly Positive Quadrant Dependent Random Fields

  • Hyun-Chull Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.350-357
    • /
    • 1995
  • In this note, we obtain the central limit theorem for linearly positive quadrant dependent random fields satisfying some assumptions on the covariances and the moment condition $supE\mid X_i\mid^3\;<{\infty}$ The proofs are similar to those of a central limit theorem for associated random field of Cox and Grimmett.

  • PDF

Theoretical Analysis of Chromatographic Peak Asymmetry and Sharpness by the Moment Method Using Two Peptides

  • Choi Du Young;Row Kyung Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.495-499
    • /
    • 2004
  • The analyses of peak shapes in chromatography are useful in operating chroma­tographic system. The asymmetry and sharpness of a chromatographic peak are estimated by the reversed-phase adsorption of two standard peptides (angiotensin II bradykinin) on $C_{18}$ In this work, the average particle diameters of $C_{18}$ were 5 and 15 $\mu$m, while the pore sizes were 100 and 300 A. The composition of the mobile phase was $50/50\;vol.\;{\%}$ of a binary mixture of acetonitrile and water with $0.1\%$ TFA, and the particles were packed in a stainless column ($4.6{\times}150$ mm). The third and the fourth central movement were calculated from the chromatographic elution curves by moment analysis. The peak asymmetry was determined by two theoretical calculations: the asymmetry factor by elution peak analysis and skewness with moment analysis. The sharpness was estimated by the fourth central moment. In this work, the most acceptable skewness was calculated when the pore size was 300 A. The large excess was observed on small pore size.

Distortional and local buckling of steel-concrete composite box-beam

  • Jiang, Lizhong;Qi, Jingjing;Scanlon, Andrew;Sun, Linlin
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.243-265
    • /
    • 2013
  • Distortional and local buckling are important factors that influences the bearing capacity of steel-concrete composite box-beam. Through theoretical analysis of distortional buckling forms, a stability analysis calculation model of composite box beam considering rotation of steel beam top flange is presented. The critical bending moment calculation formula of distortional buckling is established. In addition, mechanical behaviors of a steel beam web in the negative moment zone subjected separately to bending stress, shear stress and combined stress are investigated. Elastic buckling factors of steel web under different stress conditions are calculated. On the basis of local buckling analysis results, a limiting value for height-to thickness ratio of a steel web in the elastic stage is proposed. Numerical examples are presented to verify the proposed models.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR POSITIVELY DEPENDENT SEQUENCES

  • KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.111-117
    • /
    • 1994
  • In this note we prove a functional central. limit theorem for LPQD sequences, statisfying some moment conditions. No stationarity is required. Our results imply an extension of Birkel's functional central limit theorem for associated processt'S to an LPQD sequence and an improvement of Birkel's functional central limit theorem for LPQD sequences.

  • PDF

Experimental evaluation on the seismic performance of steel knee braced frame structures with energy dissipation mechanism

  • Hsu, H.L.;Juang, J.L.;Chou, C.H.
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.77-91
    • /
    • 2011
  • This study experimentally evaluated the seismic performance of steel knee braced frame structures with energy dissipation mechanism. A series of cyclic load tests were conducted on the steel moment resisting frames and the proposed knee braced frames. Test results validated that the demand in the beam-to-column connection designs was alleviated by the proposed design method. Test results also showed that the strength and stiffness of the proposed design were effectively enhanced. Comparisons in energy dissipation between the steel moment resisting frames and the steel knee braced frames further justified the applicability of the proposed method.

Aerodynamic performance of a novel wind barrier for train-bridge system

  • He, Xuhui;Shi, Kang;Wu, Teng;Zou, Yunfeng;Wang, Hanfeng;Qin, Hongxi
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.171-189
    • /
    • 2016
  • An adjustable, louver-type wind barrier was introduced in this study for improving the running safety and ride comfort of train on the bridge under the undesirable wind environment. The aerodynamic characteristics of both train and bridge due to this novel wind barrier was systematically investigated based on the wind tunnel tests. It is suggested that rotation angles of the adjustable blade of the louver-type wind barrier should be controlled within $90^{\circ}$ to achieve an effective solution in terms of the overall aerodynamic performance of the train. Compared to the traditional grid-type wind barrier, the louver-type wind barrier generally presents better aerodynamic performance. Specifically, the larger decrease of the lift force and overturn moment of the train and the smaller increase of the drag force and torsional moment of the bridge resulting from the louver-type wind barrier were highlighted. Finally, the computational fluid dynamics (CFD) technique was applied to explore the underlying mechanism of aerodynamic control using the proposed wind barrier.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Probabilistic models for curvature ductility and moment redistribution of RC beams

  • Baji, Hassan;Ronagh, Hamid Reza
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.191-207
    • /
    • 2015
  • It is generally accepted that, in the interest of safety, it is essential to provide a minimum level of flexural ductility, which will allow energy dissipation and moment redistribution as required. If one wishes to be uniformly conservative across all of the design variables, curvature ductility and moment redistribution factor should be calculated using a probabilistic method, as is the case for other design parameters in reinforced concrete mechanics. In this study, simple expressions are derived for the evaluation of curvature ductility and moment redistribution factor, based on the concept of demand and capacity rotation. Probabilistic models are then derived for both the curvature ductility and the moment redistribution factor, by means of central limit theorem and through taking advantage of the specific behaviour of moment redistribution factor as a function of curvature ductility and plastic hinge length. The Monte Carlo Simulation (MCS) method is used to check and verify the results of the proposed method. Although some minor simplifications are made in the proposed method, there is a very good agreement between the MCS and the proposed method. The proposed method could be used in any future probabilistic evaluation of curvature ductility and moment redistribution factors.