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Abstract
In the paper, we discuss dimension reduction of predictors X ∈ Rp in a regression of Y |X with a notion of

sufficiency that is called sufficient dimension reduction. In sufficient dimension reduction, the original predic-
tors X are replaced by its lower-dimensional linear projection without loss of information on selected aspects of
the conditional distribution. Depending on the aspects, the central subspace, the central mean subspace and the
central kth-moment subspace are defined and investigated as primary interests. Then the relationships among the
three subspaces and the changes in the three subspaces for non-singular transformation of X are studied. We dis-
cuss the two conditions to guarantee the existence of the three subspaces that constrain the marginal distribution
of X and the conditional distribution of Y |X. A general approach to estimate them is also introduced along with
an explanation for conditions commonly assumed in most sufficient dimension reduction methodologies.

Keywords: central subspace, central kth-moment subspace, central mean subspace, dimension
reduction subspace, regression, sufficient dimension reduction

1. Introduction

High-dimensional data can arise in any place at any moment. It is common that useful information be
extracted from such data for important decision making and that necessary statistical models be built
to investigate the association between variables and prediction. In these cases, dimension reduction of
data is inevitable to avoid obstacles like the curse of dimensionality. This is one reason why various
dimension reduction techniques have been developed and remain popular.

To have more intuition of necessity of dimension reduction, the prediction of Y is of main interest
in the following regression of Y |X = (X1, . . . , Xp)T:

Y |X = X1 + ε, (1.1)

where (X1, . . . , Xp) iid∼ N(0, 1) ε ∼ N(0, 1) and stands for independence. By construction, the
regression in (1.1) depends on X only through X1 regardless of the number of predictors, p.

We consider the following two ways to predict Y . First, the response Y is predicted in the usual
way of fitting the multiple linear regression Y |X ∈ Rp and then doing prediction. The second way
is to predict Y from a simple linear regression of Y |β̂TX ∈ R1, where β̂ ∈ Rp is the ordinary least
square coefficient vector estimated from the multiple linear regression. The clear difference between
the two is placed on the dimension of predictors used in fitting the regression. The dimension in
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Figure 1: Prediction confidence interval in toy regression; black, usual multiple linear regression fit; red, dimen-
sion reduction linear regression fit.

the former is p, while it is always 1 in the latter where the dimension of X is reduced from p to
1. Prediction confidence intervals are computed to compare the performances between the two with
varying p = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 (Figure 1). The sample sizes in all cases were n = 100.

Figure 1 shows that the differences between the two prediction confidence intervals are even larger,
as p increases. This simple example shows that the dimension reduction should be inevitable in high-
dimensional regression.

We now focus on dimension reduction of predictors X in regression. Especially, we will seek for
dimension reduction of X without loss of information on selected aspects of the conditional distribu-
tion of Y |X. This type of dimension reduction approach is called sufficient dimension reduction (SDR)
because a notion of reduction without loss of information is directly related to sufficiency.

A regression is to study the conditional distribution of Y |X. Let FY |X(·) denoted as the distribution
function of Y |X. The goal of SDR is to find lower-dimensional function of X, namely g(X) such that

FY |X(·) = FY |g(X)(·). (1.2)

Statement (1.2) indicates that two regression of Y |X and Y |g(X) are the same. We can equivalently
consider Y |g(X) in order to study Y |X. That is, the lower-dimensional predictor g(X) can replace X
without loss of information on the conditional distribution of Y |X, if statement (1.2) holds for g(X).
To stress this more clearly, statement (1.2) is equivalently rephrased to the following independence
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statement:

Y X|g(X). (1.3)

Statement (1.3) directly indicates that g(X) has the same amount of information on Y |X as X does.
There are many possibilities regarding forms of g(·). In SDR, we consider a lower-dimensional

linear transformation BTX of X, where B ∈ Rp×q with q < p. Then the goal of SDR is to pursue a
lower-dimensional linear projection BTX of the original p-dimensional predictors X such that

Y X|BTX. (1.4)

In the past two decades SDR methods for regression have been rapidly developed. Most of them
can be considered nonparametric because they do not assume a specific form of Y |X; however, mild
conditions are required. Unlike many local nonparametric approaches, they can often avoid the curse
of dimensionality because their estimates are global and converge at the usual

√
n rate.

The goal of the paper is to provide a notion of sufficient dimension reduction. For this, the paper
is organized as follows. Section 2 introduces dimension reduction subspaces and target dimension
reduction subspaces depending on selected aspects of regression. Some existing conditions for them
are also described. Section 3 is devoted to providing general approach of inference on the target sub-
spaces. Common conditions required in most sufficient dimension reduction methods are introduced
in Section 4. In Section 5, we summarize the work.

2. Dimension reduction subspaces and centrality

Before starting this section, we set up four models for illustration purpose. For each model, the
following variable configuration are commonly used: X = (X1, . . . , X5)T iid∼ N(0, 1) ε ∼ N(0, 1).

Example 1: Y |X = ∑5
i=1 Xi + ε;

Example 2: Y |X = X1(X1 + X2) + ε;

Example 3: Y |X = X1 + exp(X2)ε;

Example 4: Y |X ∼ B(m, p), where p = exp(
∑3

i=1 Xi)/{1 + exp(
∑3

i=1 Xi)} and B(m, p) stands for a
binomial distribution with total m trials and a success probability p.

2.1. Central subspace

For Examples 1–4 above, it can be seen that the conditional distributions of Y |X depend on X only
through

∑5
i=1 Xi, (X1, X2), (X1, X2) and

∑3
i=1 Xi, respectively. Therefore, the following relation can be

easily established:

Example 1: FY |X = FY |∑5
i=1 Xi
= FY |BT

1 X, where B1 = (1, 1, 1, 1, 1)T;

Example 2: FY |X = FY |X1,X2 = FY |BT
2 X, where B2 = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)}T;

Example 3: FY |X = FY |X1,X2 = FY |BT
3 X, where B3 = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)}T;

Example 4: FY |X = FY |∑3
i=1 Xi
= FY |BT

4 X, where B4 = (1, 1, 1, 0, 0)T.
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Therefore, with BT
i X, i = 1, 2, 3, 4, the goal of SDR is achieved for the four regressions, respectively.

For Example 2, consider the following matrices along with B2:

BT
c1

X = (X1, X1 + X2) with Bc1 = {(1, 0, 0, 0, 0)(1, 1, 0, 0, 0)}T;

BT
c2

X = (X2, X1 + X2) with Bc2 = {(0, 1, 0, 0, 0)(1, 1, 0, 0, 0)}T;

BT
c3

X =
(

1
2

X1, X1 − X2

)
with Bc3 =

{(
1
2
, 0, 0, 0, 0

)
(1,−1, 0, 0, 0)

}T

;

BT
c4

X = (−X1, X1 + 2X2) with Bc4 = {(−1, 0, 0, 0, 0)(1, 2, 0, 0, 0)}T.

Define the two coordinates of BT
2 X and BT

ci
X as (x1, x2) and (xci,1, xci,2), respectively. Then, pairs of

(x1, x2) have one-to-one mapping with those of (xci,1, xci,2) for i = 1, . . . , 4. That is, any choices of Bi

can be perfectly converted B2, and hence we have that FY |X = FY |BT
2 X = FY |BT

ci X
for i = 1, . . . , 4. Then,

which one should be chosen among the five candidates? The answer for the question is that any of the
five should be good.

Now we will see this choice problem in another direction. Define that S(B) represents a subspace
spanned by the columns of B ∈ Rp×q. It is easily seen that S(B2) = S(Bci ) for i = 1, . . . , 4. B2 and Bci

are different; however, their column subspaces are all the same. The choice problem is then no longer
an issue if we consider a subspace spanned by the columns of B to satisfy (1.4). Any orthonormal
basis of the subspace should also be fine because all of them span the same subspace. Based on this
discussion, we define a dimension reduction subspace as:

Definition 1. A subspace spanned by the columns of B such that Y X|BTX is called dimension
reduction subspace (DRS) (Cook, 1998).

A DRS always exists because B can be the identity matrix. Then, another choice problem arises be-
cause a regression has two or more DRSs. In Example 2, the columns of {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)}T
forms a DRS, but the columns of {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)}T also does a DRS. To
choose the minimal subspace among all possible DRSs should be desirable because the minimal one
still have full information of Y |X. How then do we find the minimal one among many DRSs? We will
consider the intersection of all possible DRSs defined as follows.

Definition 2. If the intersection of all possible DRSs is a dimension reduction subspace, the intersec-
tion is called central subspace (Cook, 1998), SY |X.

If SY |X exists, it is minimal and unique. Therefore, the recovery of SY |X is naturally the mainstream
in SDR. The central subspace does not always exist. We will closely investigate the conditions to
guarantee the existence of SY |X in later section.

2.2. Central mean subspace

The central subspace is to provide a complete information of the dependence of Y |X, but certain
aspects of Y |X may be of primary interest, not Y |X itself. Indeed, a regression problem is often
understood by a study of the mean function E(Y |X). If so, investigating E(Y |X) through SY |X should
be overwork because the scope of SY |X is usually expected to be larger than necessary. The regressions
like Examples 1, 2 and 4 depend on X only through their mean functions, and hence the consideration
of E(Y |X) is adequate to capture all information on Y |X.

We now move our main interest from Y |X to E(Y |X). Then, in SDR context, we need to replace
the original p-dimensional predictor by a lower-dimensional linearly transformed one without loss of
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information on E(Y |X). If so, one should recover a subspace spanned by the columns of B such that

E(Y |X) = E
(
Y |BTX

)
⇔ Y E(Y |X)|BTX, (2.1)

where B is a p × q matrix with q < p.
Based on this discussion, a mean subspace is newly defined.

Definition 3. A mean subspace (Cook and Li, 2002) is defined as a subspace spanned by the columns
of B ∈ Rp×q to satisfy Y E(Y |X)|BTX.

When the mean function has all information on Y |X, that is, satisfying

Y X|E(Y |X),

the regression is often called location regression. The location regression forms a large class of re-
gression including many generalized linear models. Their special case is an additive-error regression
model (such as usual multiple linear regression or single-index model) in which we have

Y − E(Y |X) X.

In this location regression, a mean subspace should be the primary target over SY |X.
Since there can be many mean subspaces in a regression problem, intersecting all possible mean

subspaces is required to obtain the unique and minimal one.

Definition 4. If the intersection of all possible mean subspaces is a mean subspace, the intersection
is called central mean subspace (Cook and Li, 2002), SE(Y |X).

The conditions to guarantee the existence of SE(Y |X) are the same as SY |X; therefore, they are never a
cause of concern in practice.

2.3. Central kth-moment subspace

Recall Example 3. In the example, the regression depends on X only through X1 and X2. Since SE(Y |X),
spanned by (1, 0, 0, 0, 0)T provides information of X1 alone, SE(Y |X) is inadequate to summarize the
regression. However, the consideration of the second conditional moment of var(Y |X) = exp(2X2)
along with E(Y |X) can characterize the regression and provide the same information as SY |X. That
is, in Example 2, while SE(Y |X) is clearly smaller than necessary, SY |X may be larger than necessary.
Expanding the idea of the conditional moments of Y |X like SE(Y |X), we newly construct a dimension
reduction subspace of X. This construction is similar to SE(Y |X); however, the goal is to reduce the
mean function as well as variance function and up to the kth moment function, leaving the rest of Y |X
as the nuisance parameter.

If so, SDR pursues BTX for B ∈ Rp×q with q < p such that, for i = 1, . . . , k,

M(i)(Y |X) = M(i)
(
Y |BTX

)
,

where M(k)(Y |X) = E[{Y − E(Y |X)}k |X] and M(1) is replaced by E(Y |X). Again, the statement of
M(i)(Y |X) = M(i)(Y |BTX), i = 1, . . . , k, can be re-written as the following conditional independence
statement:

Y
{
E(Y |X), . . . , M(k)(Y |X)

} ∣∣∣BTX. (2.2)
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Following the discussion, a kth-moment subspace and the central kth-moment subspace (Yin and Cook,
2002) are newly defined as:

Definition 5. A kth-moment subspace is defined as a subspace spanned by the columns of B ∈ Rp×q

such that Y {E(Y |X), . . . , M(k)(Y |X)}|BTX.

Definition 6. If the intersection of all possible kth-moment subspaces is a kth-moment subspace, the
intersection is called central kth-moment subspace, S(k)

Y |X.

If S(k)
Y |X exists, it is unique and minimal. Also, under the conditions to guarantee existence of SY |X,

S(k)
Y |X exits and is therefore not a cause of concern.

2.4. Relation of SY |X, SE(Y |X), S(k)
Y |X and non-singular transformation of X

If SE(Y |X), S(k)
Y |X and SY |X exist for a regression of Y |X, we have SE(Y |X) ⊆ S(k)

Y |X ⊆ SY |X. Also, the
following four relationships naturally hold (Cook, 1998; Yin and Cook, 2002):

S(1)
Y |X = SE(Y |X);

SE(Y |X) ⊆ S(2)
Y |X ⊆ · · · S

(k)
Y |X · · · ⊆ SY |X;

lim
k→∞
S(k)

Y |X = SY |X;

SE(Y |X) = S(k)
Y |X = SY |X under a location regression.

We normally expect that SE(Y |X) ⊆ S(2)
Y |X = SY |X because the regression models for Y |X often depend

on X only through the first two conditional moments.
Let SX denote one of SY |X, SE(Y |X) or S(k)

Y |X for a regression of Y |X. Then we have the following
result for a non-singular transformation of X.

Results 1. Let A be a p× p non-singular matrix and define that Z = ATX. Consider SX and SZ from
two regressions of Y |X and Y |Z, respectively. Then, we have SX = ASZ.

Suppose that Z = Σ−1/2{X−E(X)}, where Σ = cov(X) and Σ−1/2Σ−1/2 = Σ−1. Then Z is a standardized
predictor with mean vector equal to zero and covariance matrix equal to the identity matrix. Result 1
directly implies that SX = Σ

−1/2SZ. In most SDR methodologies, SX should be the primary target,
but SZ is often restored first and then back-transformed to SX for computational stability. It should
be noted that the dimension of SX and SZ are equal, although bases of SX and SZ are different.

In SDR, any of SE(Y |X), S(k)
Y |X, or SY |X should be the primary target subspace. Hereafter, its di-

mension (often called structural dimension) and orthonormal basis will be denoted as d and η (ηz for
Z-scale predictors). The dimension-reduced linearly transformed predictors ηTX are also known as
sufficient predictors.

2.5. Conditions to guarantee the existence of SY |X

The central subspace may not always exist. Consider X = (X1, X2)T with X2
1 + X2

2 = 1. That is, X1 and
X2 are uniformly distributed on the unit circle. Y |X = X2

1 + ε, where ε ∼ N(0, 1) X. The regression
of Y |X above depends on X only through X1. Therefore, the column of η1 = (1, 0)T forms a DRS.

By construction of X, X2
1 = 1−X2

2 . a regression of Y |X = 1−X2
2+ε is equivalent to the original one

of Y |X = X2
1 + ε; therefore the alternative regression depends on X only through X2 with η2 = (0, 1)T.
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The column of η2 then also forms a DRS. It is easily seen that S(η1) ∩ S(η2) = O. The central
subspace does not exist; however, two DRSs do.

The existence of SY |X can be guaranteed by constraining the marginal distribution of X and the
conditional distribution of Y |X.

Results 2. Let S(α) and S(ϕ) be DRSs for Y |X. If X has a density f (a) > 0 for a ∈ Ωx ⊂ Rp and
f (a) = 0 otherwise, and if Ωx is a convex set, then S(α) ∩ S(ϕ) is a DRS.

Result 2 directly indicates that SY |X exists in regressions, if X has a density with a convex support.

Results 3. Let S(α) and S(ϕ) be DRSs for a location regression of Y |X such that Y X|E(Y |X). If
X has a density f on Ωx ⊂ Rp, and if E(Y |X) can be expressed as a convergent power series in the
coordinates of X = Xk,

E(Y |X) =
∞∑

k1,...,kp

ak1,...,kp Xk1
1 · · · X

kp
p ,

then S(α) ∩ S(ϕ) is a DRS.

Under a location regression, we have that Y X|ηTX ⇔ Y X|E(Y |ηTX). Result 3 requires E(Y |X)
to be well-behaved and requires X to have a density not necessarily positive everywhere. Result 3 can
be easily extended to the case with higher-order conditional moments upto k such that

Y X
∣∣∣ {E(Y |X),M(2)(Y |X), . . . ,M(k)(Y |X)

}
.

Therefore, according to Results 2–3, its existence is not a crucial practical issue along with those
of SE(Y |X) and S(k)

Y |X since the conditions to guarantee the existence of SY |X is mild. Cook (1998,
Chapter 6.4) is recommended for proof or more information on Results 2–3.

3. General approach of inference on SX

Inference on SX has two components to estimate the true structural dimension d and an p × d or-
thonormal basis matrix η. Usually, most SDR methodologies under certain conditions (which will be
discussed later) construct a kernel matrix M ∈ Rp×p ≥ 0 such that

S(M) = SX.

Next, M is spectral-decomposed as:

M =
p∑

i=1

λiγiγ
T
i ,

where λ1 ≥ λ2 ≥ · · · λp ≥ 0 and γT
i γi = 1 and γT

i γ j = 0, i , j.
Typically, the structural dimension d is determined first. Since S(M) = SX, the rank of M is the

same as d of SX. The rank of M is also equal to the number of non-zero eigenvalues among λ1, . . . , λp.
This directly indicates that the structural dimension is equal to the number of non-zero eigenvalues of
M, and d is determined via testing a sequence of hypothesis (Li, 1991; Rao, 1965). Beginning with
m = 0, test the hypothesis of

H0 : d = m versus H1 : d > m.
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If H0 : d = m is rejected, increment m by 1 and redo the test. The test is stopped for the first time
H0 : d = m is not rejected, and set d̂ = m.

These sequential tests require statistics Λm to test under H0 : d = m, which are the sum of the
ordered eigenvalues multiplied by n:

Λm = n
p∑

m+1

λi, m = 0, 1, . . . , (p − 1).

The large sample distribution of Λm depends on SDR methodologies.
Once d is determined to d̂, η̂ becomes a set of eigenvectors corresponding to the first d̂ largest

eigenvalues such that

η̂ =
(
γ1, . . . , γd̂

)
.

Then, S(η̂) is an estimate of SX.

4. Common conditions in sufficient dimension reduction methodologies

Here we review crucial conditions in SDR. Using the relation of SX = Σ
−1/2SZ, the conditions are

discussed with the regression of Y |Z rather than that of Y |X. Let ηZ ∈ Rp×d be an orthonormal basis
matrix of SY |Z.

4.1. Linearity condition

The linearity condition is very common in SDR literature, which is:

E
(
Z|ηT

ZZ = ν
)

is linear in ν.

The main role of the linearity condition has been understood to force subspaces spanned by the
columns of kernel matrices M ∈ Rp×p produced by SDR methods to be a proper subspace of SY |Z
such that S(M) ⊆ SY |Z. Therefore, most SDR methods require the condition in their methodological
development.

This condition is guaranteed to hold if the predictors X are elliptically distributed (Eaton, 1986).
According to Hall and Li (1993), it is shown that (with large p) the linearity condition may hold to a
reasonable approximation in many regressions. Li et al. (2004) discuss that nonlinearity among the
predictors can degrade the performance of most estimation methods, in some applications that yield
completely misleading results. Therefore, it is required to investigate if the condition is satisfied.
One popular way is to inspect a scatterplot matrix of the predictors. The condition then seems to be
satisfied if all cells of the plot look quite linear. However, there may be a chance that unobserved
nonlinearity among the predictors exists despite appearing quite linear. Transforming or re-weighting
of predictors is typically done if this linearity condition does not hold. However, a transformation of
high-dimensional predictors may be inconvenient or infeasible. The re-weighting is computationally
intensive (especially if p is high) and causes a deletion of observations in the data.

Recently, Shao et al. (2006) provides a new view of the condition with respect to an adaptive
estimation of η in the following single index model:

Y |X = g
(
ηTX

)
+ ε,

where g(·) is unknown link functions and ε represents random error.
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A regression of Y |X depends on X only through at most one linear combination ηTX ∈ R1 of
the predictors. Therefore, the single index model can be considered as a special case of SDR. An
adaptive estimator is an efficient estimator for a model that is only partially specified. We do not
know the form of g(·) in the single-index model above. Therefore the model is partially specified, and
an asymptotically efficient estimator of η is an adaptive estimator. For an adaptive estimators, one can
read a seminal paper by Bickel (1982).

According to Shao et al. (2006), linearity condition guarantees existence of an adaptive estimate
of η in the single-index model. Therefore, linearity condition let η estimated with the same efficiency
as the link function is known. Thus, the linearity condition seems to substitute for knowing the exact
conditional distribution of Y |ηTX, which has the same as that of Y |X.

4.2. Constant variance condition

Some SDR methods require the following constant variance condition along with the linearity condi-
tion:

cov
(
Z|ηT

ZZ
)
= QηZ

,

where QηZ
is an orthonormal projection operator onto the orthogonal complement of S(ηZ).

To understand a role of the constant variance condition, the inverse conditional variance function
cov(Z|Y) under linearity condition for ηT

ZZ can be investigated as:

cov(Z|Y) = E
{
cov

(
Z|Y, ηT

ZZ
) ∣∣∣∣Y}

+ cov
{
E

(
Z|Y, ηT

ZZ
) ∣∣∣∣Y}

= E
{
cov

(
Z|ηT

ZZ
) ∣∣∣∣Y}

+ cov
{
E

(
Z|ηT

ZZ
) ∣∣∣∣Y}

= E
[
E

{(
Z − E

(
Z|ηT

ZZ
))2 ∣∣∣∣ηT

ZZ
} ∣∣∣∣Y]

+ cov
(
PηZ

Z|Y
)

= E
[
E

{(
Z − PηZ

Z
)2 ∣∣∣∣ηT

ZZ
} ∣∣∣∣Y]

+ PηZ
cov(Z|Y)PηZ

= E
{
cov

(
QηZ

Z|ηT
ZZ

) ∣∣∣∣Y}
+ PηZ

cov(Z|Y)PηZ

= QηZ
E

{
cov

(
Z|ηT

ZZ
) ∣∣∣∣Y}

QηZ
+ PηZ

cov(Z|Y)PηZ
.

Assuming that the constant variance condition holds additionally, it is simplified:

cov(Z|Y) = QηZ
+ PηZ

cov(Z|Y)PηZ
.

Under both linearity and constant variance conditions we have the following equivalences for Ip −
cov(Z|Y).

Ip − cov(Z|Y) = Ip −QηZ
− PηZ

cov(Z|Y)PηZ
= PηZ

− PηZ
cov(Z|Y)PηZ

= PηZ

{
Ip − cov(Z|Y)

}
PηZ

.

This implies that Ip − cov(Z|Y) can provide some information on SY |Z.
Cook (2000) discusses the constant variance condition as: the condition holds, if Z is normally

distributed, or it approximately holds, if Z is elliptically contoured. Experience also shows that it is
less crucial than the linearity condition; therefore, the condition can be inspected through a scatterplot
matrix of the predictors. The predictors are transformed for normality like the linearity condition if
the condition is not satisfied.
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4.3. Coverage condition

The goal of linearity and constant variance conditions is to induce the relationship of S(M) ⊆ SY |Z.
This indicates that any of the two or both do not guarantee an exhaustive estimation of SY |Z. To
have the exhaustive estimation, S(M) = SY |Z is assumed to hold, which is called coverage condition.
Different from the previous two conditions, it is not possible to investigate that the coverage condition
holds in practice. In most SDR methods, either of linearity or constant variance conditions or both
are first assumed to hold for guaranteeing that M spans proper subsets of SY |Z. Then the coverage
condition is assumed for the exhaustive estimation of SY |Z.

5. Discussion

In the paper, we introduce a notion of sufficient dimension reduction in a regression of Y |X ∈ Rp. The
goal of SDR is to replace the original predictors X by its lower-dimensional linear projection without
loss of information on selected aspects of the conditional distribution Y |X. Depending the aspects,
the central subspace, the central mean subspace and the central kth-moment subspace are defined
as primary interest. The conditions to guarantee the existence of the three subspaces are discussed
since the three subspaces do not always exist. A general estimation approach to estimate them is also
introduced, and the conditions commonly assumed in most SDR methodologies are explained.

In a sequence of the second tutorial, SDR methodologies will be introduced to estimate the central
subspace, the central mean subspace and the central kth-moment subspace. For the central subspace,
methods using the conditional moments of the inverse regression of X|Y are used such as sliced inverse
regression (Li, 1991) and sliced average variance estimation (Cook and Weisberg, 1991). To estimate
the central mean subspace, the ordinary least square (Cook, 1998), principal Hessian direction (Li,
1992) and iterative Hessian transformation (Cook and Li, 2002) are popular among many. The central
kth-moment subspace is restored by the covariance method proposed by Yin and Cook (2002). Most
of the methodologies have the large-sample tests to determine the structural dimensions. However,
a permutation test will be studied, and one of its advantages is no requirement large-sample distri-
butions. Real data analysis for the methodologies will be presented to illustrate how to apply the
methodologies in practice, and the results will be compared. A seeded dimension reduction approach
(Cook et al., 2007) will also be introduced to provide a neat solution of SDR to large p and small n
regression.
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