• 제목/요약/키워드: Central Cooling System

검색결과 94건 처리시간 0.029초

공공건물 중앙식 냉난방시스템의 연간 운영 사례 분석 (Analysis of Annual Operation Status of Central Heating and Cooling System in a Public Office Building)

  • 라선중;엄태윤;손진웅
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.175-180
    • /
    • 2020
  • The purpose of this study was to clarify precautions during the design and operation phases for energy reduction in a public office building. To check the operation status of the building, we measured the indoor temperature and humidity in the office space of the building installed central heating and cooling systems. And we analyzed these data and annual BEMS data. As a result, we found six problems related to decreasing system efficiency. Based on these, we presented the information to improve the efficiency of the system from the design and operation phase. Also, we present the need for a system to support the decision-making of operational managers in real-time for the energy efficiency of the building.

건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구 (Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System)

  • 황진원;안병천
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4610-4615
    • /
    • 2013
  • 본 연구에서는 중앙냉방시스템용 모형실험장치를 구성하여 에너지 소비량 및 전력사용요금의 절감을 위한 최적제어방법을 구현하여 실험적 연구를 수행하였다. 최적제어방법으로는 새벽시간의 예냉을 이용한 전력디맨드 응답제어와 외기온도변화를 고려한 외기보상제어방법 등을 고려하였으며, 제어알고리즘은 LabVIEW 프로그램을 이용하여 작성하였으며, 제어 및 모니터링을 통해 최적제어방법과 기존제어방법과의 제어성능을 비교 고찰하였다. 연구결과로서 본 연구에서 제시한 최적제어방법이 기존제어방법에 비해 양호한 응답특성을 나타냈으며, 에너지소비량은 약 9.5%, 전력요금은 약 15.7%를 각각 절감한 것으로 나타났다.

냉각수 순환 형태의 파이프 쿨링 공법의 설계 (Design of Closed Loop Pipe Cooling System)

  • 박찬규;왕인수;구자중
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2001년도 학술논문발표회
    • /
    • pp.52-57
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. The pipe cooling method leads to the decrease of curing period by lagging materials as well as the decrease of temperature difference between center and surface of mass concrete member, There are two methods in the pipe cooling system, which are open loop system and closed loop system. However open loop pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation in the central area of city, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance results of hydration heat control with closed loop pipe cooling system.

  • PDF

노심손상빈도 평가를 위한 APR+ PAFS의 안전 해석 (Safety Analysis of APR+ PAFS for CDF Evaluation)

  • 강상희;문호림;박영섭
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.123-128
    • /
    • 2013
  • The Advanced Power Reactor Plus(APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system(PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system(AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. As the PAFS completely replaces the conventional AFWS, it is required to verify the cooling capacity of PAFS for the core damage frequency(CDF) evaluation. For this reason, this paper discusses the cooling performance of the PAFS during transient accidents. The test case and scenarios were picked from the result of the sensitivity analysis in APR+ Probabilistic Safety Assessment(PSA). The analysis was performed by the best estimate thermal-hydraulic code, RELAP5/.MOD3.3. This study shows that the plant maintains the stable state without the core damages under the given test scenarios. The results of PSA considering this analysis' results shows that the CDF values are decreased. The analysis results can be used for more realistic and accurate performance of a PSA.

The concept of the innovative power reactor

  • Lee, Sang Won;Heo, Sun;Ha, Hui Un;Kim, Han Gon
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1431-1441
    • /
    • 2017
  • The Fukushima accident reveals the vulnerability of existing active nuclear power plant (NPP) design against prolonged loss of external electricity events. The passive safety system is considered an attractive alternative to cope with this kind of disaster. Also, the passive safety system enhances both the safety and the economics of NPPs. The adoption of a passive safety system reduces the number of active components and can minimize the construction cost of NPPs. In this paper, reflecting on the experience during the development of the APR+ design in Korea, we propose the concept of an innovative Power Reactor (iPower), which is a kind of passive NPP, to enhance safety in a revolutionary manner. The ultimate goal of iPower is to confirm the feasibility of practically eliminating radioactive material release to the environment in all accident conditions. The representative safety grade passive system includes a passive emergency core cooling system, a passive containment cooling system, and a passive auxiliary feedwater system. Preliminary analysis results show that these concepts are feasible with respect to preventing and/or mitigating the consequences of design base accidents and severe accidents.

중앙공조 및 개별공조에서의 외조기 적용 (Application of Four-season Dedicated Outdoor Air Handling Unit in Central and Personal Air-conditioning)

  • 박승태;김영일;이태호;최세영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.591-596
    • /
    • 2008
  • The present study has been conducted to study the performance of dedicated outdoor air handling unit in central and personal air-conditioning. With conventional central and personal air-conditioning systems which are designed according to the maximum load, humidity increase above comfort level can not be avoided as the cooling load decreases. The adoption of dedicated outdoor air handling unit, however, can solve this problem. Moreover, the dedicated outdoor air handling unit has the characteristics of anti-bacteria due to dry coil, energy saving and good indoor air quality. During cooling seasons, dedicated outdoor air handling unit can save energy up to 30% than the conventional cooling+reheating system for controlling both temperature and humidity.

  • PDF

중앙냉방시스템의 최적제어에 관한 연구 (Optimal Control for Central Cooling Systems)

  • 안병천
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

중앙냉방시스템의 외기온도조건을 고려한 나이트 퍼지 제어방안에 관한 연구 (Night Purge Control Strategies With Outdoor Air Temperature Conditions for Central Cooling System)

  • 황진원;안병천
    • 한국산학기술학회논문지
    • /
    • 제16권10호
    • /
    • pp.6759-6765
    • /
    • 2015
  • 본 연구에서는 자연외기를 활용하여 건물의 중앙냉방시스템에 대한 에너지를 절약하기 위한 제어방법으로서 외기온도 조건을 고려한 나이트 퍼지제어의 적용방안에 대해 시뮬레이션 연구가 수행되었다. 외기온도의 변화특성 및 건물의 축냉성능 등이 고려되었으며, 나이트 퍼지제어를 위한 운전시작시간과 제어설정온도의 선정방안이 연구되었다. 본 연구를 위하여 TRNSYS 프로그램을 활용하여 시스템 해석 모델링을 수행하였으며, 기존 제어방식 대비 제안된 제어방법의 에너지 절약성능을 비교 분석하였다. 연구결과로 외기온도 변화에 따라 나이트 퍼지제어를 위한 운전조건을 선정한 제안된 제어방법이 기존의 나이트 퍼지제어 제어방식과 비교하였을 때는 최대 16.8%, 나이트 퍼지제어를 적용하지 않은 경우에 비해서는 최대 28.6%의 에너지 절감이 가능함을 알 수 있었다.

태양열 냉방 및 급탕 시스템의 제어 조건에 따른 열성능 (Thermal Performance of Solar Cooling & Hot-water System According to Control Condition)

  • 이호;주홍진;김상진;곽희열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.214-219
    • /
    • 2008
  • This study is describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu culture center of Kwanju. Control condition for solar cooling and hot water system is changed by connection of auxiliary heater. Demonstration system was connected to central air conditioning system. Demonstration system was operated by two types. First type(A) was operated to cooling and hot water supply in that order. Second type(B) was operated to hot water supply and cooling in that order. As a result. it was indicated that the total solar energy consumption of (A) was 799 MJ and the solar energy consumption rate for the cooling and hot water supply was 70% and 30% respectively. Total solar energy consumption of (b) was 898 MJ and the solar energy consumption rate for the cooling and hot water supply was 31% and 69% respectively.

  • PDF

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.