• 제목/요약/키워드: Central Cavity

Search Result 179, Processing Time 0.035 seconds

THE EFFECT OF THE ENDODONTIC ACCESS CAVITY ON THE MARGINAL LEAKAGE OF CROWNS (금전장관 수복물을 통한 치수강 개방이 금전장관 수복물의 미세변연누출에 미치는 영향)

  • Kim, Eui-Seong;Chung, Jin-Ho;Kim, Yong-Kun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.389-393
    • /
    • 2002
  • The marginal integrity of the crown can be broken during endodontic access cavity preparation due to the vibration of burs. Therefore, the purpose of this study was to evaluate the effect of endodontic access cavity preparation on the marginal leakage of full veneer gold crowns. 24 intact molars were mounted in acrylic resin blocks and prepared for crowns by a restorative dentist and crowns were cast with gold alloy. 20 Crowns were cemented with glass ionomer cement and 2 crowns were not cemented for positive control. 200 thermo-cycles from 5$^{\circ}C$ to 5$0^{\circ}C$ with a travel time of 20s were completed. Then samples were randomly divided into 2 experimental groups of 9 each. Endodontic access preparation and zinc-oxide eugenol temporary fillings were done in Group 1. Teeth in Group 2 were not treated. Samples were coated with 2 layers of nail varnish and were immersed in 1% methylene blue dye for 20 hrs. Endodontic access was prepared in 2 samples, which were coated with nail varnish on all surfaces for negative control. After washing in running water gold crowns were cut with a #330 bur. Four buccolingual sections, 2 mm apart, were cut from the central section of each tooth and were examined and scored under the microscope for dye leakage. Score 1: leakage to the cervical 1/3 of the axial wall, Score 2: leakage to the middle 1/3 of the axial wall, Score 3: leakage to the coronal 1/3 of the axial wall, Score 4: leakage to the occlusal surface. The median value for Group 1 is 4 and for Group 2 is 2. The result of this study showed that samples in Group 1 leaked more than those in Group 2. This finding was significant(P<0.001).

A COMPARATIVE STUDY ON THE COMPOSITE RESTORATION DESIGN AND PLACEMENT METHODS USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (광중합 콤포짓트레진의 수복형태 및 방법에 관한 삼차원 유한요소분석법적 비교 연구)

  • Lee, Jung-Taek;Yim, Soon-Ho;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.133-149
    • /
    • 1998
  • Clinical application of composite resin recently draw great concerns in dentistry. Especially due to advantages such as esthetics, adhesiveness, simple clinical procedures, various shapes and kinds of composite resins are widely being applied to prosthodontics, conservative dentistry, and orthodontics. But, clinical problems attributable to the polymerization shrinkage of composite resin have been proposed, and we have to regard clinical problems such as secondary caries, loss of restoration, fracture of the surrounding tooth structure, marginal discoloration, and tooth sensitivity, and many portions are remained to be overcome. Therefore, this study attempts to analyze stress distribution between resin and tooth structure which is generated during polymerization shrinkage of composite resin using three dimensional finite element method. Three dimensional finite element models with conventional box-shape cavity and erosion/abrasion type V-shape lesion cavity in upper central incisor were developed. These cavities were filled with four different types of placement techniques. (bulk filling, horizontal increment filling, oblique occlusal increment filling, oblique gingival increment filling) The stresses generated by polymerization shrinkage of composite resin were calculated. The results analyzed with three dimensional finite element method were as follows : 1. The increment filling technique showed the highest maximum normal stress in both conventional box-shape and V-shape cavities and showed a tendency to decrease after complete polymerization. 2. The bulk filling technique resulted in increased stresses during the curing process in both conventional box-shape and V-shape cavities and the highest maximum normal stress occurred after complete polymerization. 3. The bulk filling resulted in the lowest maximum normal stress in both box-shape and V-shape cavities 4. Regardless of placement method, in conventional box-shape cavity, the maximum normal stress increased in dentin floor, enamel, dentin sequence and in V-shape cavity, the maximum normal stress increased in enamel, dentin sequence.

  • PDF

I-형 마멸 손상된 증기발생기 전열관의 파열압력해석

  • 신규인;박재학;정명조;최영환
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.38-43
    • /
    • 2003
  • 증기발생기 전열관의 마멸은 유체 유발 진동(flow induced vibration)에 의한 전열관과 증기발생기 상부 지지구조물 사이에서 발생하게 되며 원통 지지대(stay cylinder)상부의 중앙 공공(central cavity) 주변에 집중적으로 발생되는 것으로 보고되고 있다. 국내에서는 1997년 영광 4호기의 증기발생기에 마멸 손상이 보고된 이후 영광 3호기와 울진 3, 4호기에서도 마멸 손상이 발견되고 있으며, 외국에서는 1992-1993년 기간동안 대략 500∼600 개의 전열관이 마멸에 의해 관막음(p1u99ing)된 것으로 보고되었다.(중략)

  • PDF

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

Effect of Systemic Fungicide on Total Hemocyte Count and Hemolymph Biochemical Changes in Silkworm, Bombyx mori L., infected with Beau-veria bassiana

  • Mallikarjuna, M.;Nataraju, B.;Thiagarajan, V.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.189-194
    • /
    • 2002
  • Silkworm diseases are major constraint in silk cocoon production. Among silkworm diseases, white muscar-dine is highly contagious and most common in winter and rainy seasons. It is suggested that hemocytes involve in defense against invasion of Beauveria bassi-ana and systemic fungicide/chemicals prevent the proliferation of fungi in the hemolymph or preventing the growth of the fungi in the body cavity through enhancing the hemocyte mediated defense response. In the present study the influence of systemic fungicide on hematological changes in silkworms infected with Beauveria bassiana was reported. It is observed that the total hemocyte counts increased in the hemolymph up to 5 days post inoculation in systemic fungicide treated batches while in the inoculated control the increase was up to 3 days indicating the positive hemocyte mediated response in silkworm treated with systemic fungicide. After 2 days in the inoculated control as the multiplication and growth of mycelia increased, defense capacity of the silkworm was decreased. The biochemical changes were also observed in the hemolymph of silkworm infected with B. bassiana. In silkworm infected with Beauveria bassi-ana, the total protein content increased whereas total carbohydrate and total lipids decreased as the infection progresses. In the case of systemic fungicide treated batches the increase in total protein content was comparatively higher and decrease in total carbohydrate and lipids were comparatively lower than the inoculated control.

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

Oligomeric Structure of the ATP-dependent Protease La (Lon) of Escherichia coli

  • Park, Seong-Cheol;Jia, Baolei;Yang, Jae-Kyung;Le Van, Duyet;Shao, Yong Gi;Han, Sang Woo;Jeon, Young-Joo;Chung, Chin Ha;Cheong, Gang-Won
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.129-134
    • /
    • 2006
  • Lon, also known as protease La, belongs to a class of ATP-dependent serine protease. It plays an essential role in degradation of abnormal proteins and of certain short-lived regulatory proteins, and is thought to possess a Ser-Lys catalytic dyad. To examine the structural organization of Lon, we performed an electron microscope analysis. The averaged images of Lon with end-on orientation revealed a six-membered, ring-shaped structure with a central cavity. The side-on view showed a two-layered structure with an equal distribution of mass across the equatorial plane of the complex. Since a Lon subunit possesses two large regions containing nucleotide binding and proteolytic domains, each layer of the Lon hexamer appears to consist of the side projections of one of the major domains arranged in a ring. Lon showed a strong tendency to form hexamers in the presence of $Mg^{2+}$, but dissociated into monomers and/or dimers in its absence. Moreover, $Mg^{2+}$-dependent hexamer formation was independent of ATP. These results indicate that Lon has a hexameric ring-shaped structure with a central cavity, and that the establishment of this configuration requires $Mg^{2+}$, but not ATP.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO CAVITY DESIGN OF CLASS V COMPOSITE RESIN FILLING (5급와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun;Cho, Byeong-Hoon;Rim, Young-Il
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 1999
  • The use of composite restorative materials is established due to continuing improvements in the materials and restorative techniques. Composite resins are widely used for the restoration of cervical lesions because of esthetics, good physical properties and working time. There are several types of cavity design for class V composite resin filling, but inappropriate cavity form may affect bonding failure, microleakage and fracture during mastication. Cavity preparations for composite materials should be as conservative as possible. The extent of the preparation is usually determined by the size, shape, and location of the defect. The design of the cavity preparation to receive a composite restoration may vary depending on several factors. In this study, 5 types of class V cavity were prepared on each maxillary central incisor. The types are; 1) V-shape, 2) round(U) shape, 3) box form, 4) box form with incisal bevel and 5) box form with incisal bevel and grooves for axial line angles. After restoration, in order to observe the concentration of stress at bonding surfaces of teeth and restorations, developing a 2-dimensional finite element model of labiopalatal section in tooth, surrounding bone, periodontal ligament and gingiva, based on the measurements by Wheeler, loading force from direction of 45 degrees from lingual side near the incisal edge was applied. This study analysed Von Mises stress with SuperSap finite element analysis program(Algor Interactive System, Inc.). The results were as follows : 1. Stress concentration was prevalent at tooth-resin bonding surface of cervical side on each model. 2. In model 2 without line angle, stress was distributed evenly. 3. Preparing bevel eliminated stress concentration much or less at line angle. 4. Model with round-shape distributed stress concentration more evenly than box-type model with sharp line angle, therefore decreased possibility of fracture. 5. Adding grooves to line angles had no effect of decreasing stress concentration to the area.

  • PDF

Relation between Cultural Condition and Occurrence of Internal Cavity in Red Ginseng (재배조건(栽培條件)이 홍삼(紅參)의 내공발생(內空發生)에 미치는 영향(影響))

  • Yoon, Jong-Hyuk;Kim, Jai-Joung;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.175-180
    • /
    • 1992
  • The occurrence of internal cavity of in red ginseng is one of critical quality criteria. The occurrence of internal cavity mainly due to fresh ginseng character that is determined by growth conditions. Growth conditions and percent occurrence of internal cavity were investigated on various ginseng plantations for 6 years and the relation. ships among them were statistically analysed. In addition, field experiments were carried out seperately for the effect of special factors. 1. Internal cavity in red ginseng mainly occurred on area between central part and cortex part of tap root in red ginseng. It was suppose to be caused by characteristics of fresh ginseng. 2. Soil moisture decreased percent occurrence of internal cavity(PIC) above 27.5 % of PIC and increased below it. 3. The factors of shade structure with high intensity of light condition tend to increase PIC. PIC was decreased below 15.9 % of light transmittance rate and increased above it.

  • PDF