• 제목/요약/키워드: Centerline Characteristics

검색결과 132건 처리시간 0.024초

이중공기공급 이유체노즐의 선회각 변화에 따른 분무특성 (Effect of Swirl Angle on the Atomization Characteristics in Two-Fluid Nozzle with Dual Air Supplying System)

  • 김의수;강신명;최윤준;김덕진;이지근;노병준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.54-60
    • /
    • 2008
  • The atomization characteristics of the dual air supplying twin-fluid nozzle were investigated experimentally using PIV and PDA systems. The two-fluid nozzle is composed of three main parts: the feeding injector to supply fluid that is controlled by a PWM (pulse-width modulation) mode, the adaptor as a device with the ports for supplying the carrier and assist air and the main nozzle to produce the spray. The main nozzle has the swirl tip with four equally spaced tangential slots, which give the injecting fluid an angular momentum. The angle of the swirl tip varied with 0$^{\circ}$ 30$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$, and the ratios of carrier air to assist air and ALR(total air to liquid) were 0.55 and 1.23, respectively. The macroscopic behavior of the spray was investigated using PIV system, and the mean velocity, turbulent intensity and SMD distributions of the sprays were measured using PDA system. As the results, the mean axial velocity at the spray centerline decrease with the increase of the swirl angle. The turbulent intensities of the axial and radial velocity were increased with the increase of the swirl angle. The mean SMD (Sauter mean diameter) of the radial direction along the axial distance shows the lowest value at the swirl angle of 60$^{\circ}$.

  • PDF

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1999년도 제13회 학술강연논문집
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

실내 환경에서 송수신기 위치 변화에 따른 전파 전달 특성 분석 (Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment)

  • 이성훈;조병록;이화춘
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.211-218
    • /
    • 2020
  • 실내 환경에서 송수신기의 위치 변화에 따른 전파 전달 특성을 시뮬레이션을 통하여 예측하고, 경로손실 측정을 통하여 얻어진 결과를 예측결과와 비교하고 분석하였다. 경로손실 측정 환경으로는 대회의실을 선택하였으며, 또한 실내 장식물 및 비품이 없는 전시실을 선택하여 두 환경의 전파 전달 특성을 비교하였다. 각 실내 환경에서 송신기의 위치는 전방 벽면 중앙과 측면 벽면 중앙에 위치하는 두 가지 경우를 선택하였고, 수신기의 위치는 실내 공간의 중심선과 측면 벽을 따라 움직이며 수신 전력을 측정하였다. 각각의 송수신기 위치변화에 대하여 3GHz와 6GHz의 수신 전력을 측정하고 시뮬레이션 예측 결과와 비교하였다. 송신기의 위치 및 주파수 대역 변화에 따라 각 수신점에서 수신 전력의 변화를 분석하였다.

3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가 (Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle)

  • ;김태호;;김희동
    • 한국추진공학회지
    • /
    • 제24권1호
    • /
    • pp.34-46
    • /
    • 2020
  • 직사각형 초음속 노즐의 3차원 역유동 추력벡터 제어 시스템에 대한 공기역학적 특성을 조사하기 위하여 수치해석을 수행하였다. 이 초음속 노즐은 특성곡선법에 의하여 설계되었으며, 그 설계 마하수는 2.5이다. 2차 유동 덕트의 갭 높이를 변수로 하여 역유동 추력벡터 제어 시스템의 성능을 조사하였다. 상부 흡입 칼라의 중심선을 따르는 정압 분포, 편향각, 2차 질량유량비 및 합성 추력계수와 같은 주요 매개변수가 정량적으로 분석되었다. 또한 전체 유동장의 특성을 알아보기 위하여 대칭 평면에서의 유선, 3차원 등마하수분포 및 3차원 난류에너지분포를 조사하였다.

엔진 직결식 트랙터 PTO 전동 라인의 치타음 분석 (Analysis of Rattle Noise of a Direct Engine-driven PTO Driveline of Tractors)

  • 박영준;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 2006
  • This study was conducted to identify the characteristics of PTO rattle noise of a direct engine-PTO driveline for agricultural tractors. In order to reduce production costs of agricultural tractors, a direct engine-PTO driveline was recently introduced to the tractors produced in Korea. This simplified drive line reduced a number of gears and counter shafts in previous one. However, it caused a severe rattle noise under an idle condition, which was perceived as intolerable by many tractor operators. PTO rattle noise was measured at two locations: one 3 em apart radially from the centerline of the PTO shaft and another 100 em apart backward from the PTO end and 160 em high from the ground. Characteristics of the rattle was analyzed using the data measured near the PTO shaft. It was found that the period of rattle noise was same as the explosion stroke of engine and its peak level was about 123 dB (A) with PTO engaged at an idle engine speed of 880 rpm. As the engine speed increased, the rattle noise decreased. The frequency band of the rattle was 0.5-2.0 kHz and the frequency of peak sound pressure was 1.4 kHz. When compared the rattle noise between the locally produced and imported tractors of the same type of PTO driveline, the former generated louder rattle noise than the imported one by 7 dB (A). It was suggested that the rattle noise of local tractors must be reduced at least by 7 dB (A) to meet the international level.

Atomization Characteristics in Pneumatic Counterflowing Internal Mixing Nozzle

  • Lee, Sam-Goo;Rho, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1131-1142
    • /
    • 2000
  • In an effort to illustrate the global variation of SMD (Sauter mean diameter, or $D_{32}$) and AMD (Arithmetic mean diameter, or $D_{10}$) at five axial downstream locations (i. e., at Z=30, 50, 80, 120, and 170 mm) under the different experimental conditions, the radial coordinate is normalized by the spray half-width. Experimental data to analyze the atomization characteristics concerning with an internal mixing type have been obtained using a PDPA(Phase Doppler Particle Analyzer). The air injection pressure was varied from 40 kPa to 120 kPa. In this study, counterflowing internal mixing nozzles manufactured at an angle of $15^{\circ}$with axi-symmetric tangential-drilled four holes have been considered. By comparing the results, it is clearly possible to discern the effects of increasing air pressure, suggesting that the disintegration process is enhanced and finer spray droplets can be obtained under higher air assist. The variations in $D_{32}$ are attributed to the characteristic feature of internal mixing nozzle in which the droplets are preferentially ejected downward with strong axial momentum, and dispersed with the larger droplets which are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup by higher shear stresses at farther axial locations. The poor atomization around the centre close to the nozzle exit is attributed to the fact that the relatively lower rates of spherical particles are detected and these drops are not subject to instantaneous breakup in spite of the strong axial momentum. However, substantial increases in SMD from the central part toward the edge of the spray as they go farther downstream are mainly due to the fact that the relative velocity of droplet is too low to cause any subsequent disintegration.

  • PDF

쿼드로터형 무인비행체의 후류 특성에 관한 실험적 연구 (An Experimental Study on the Wake Characteristics of a Quadrotor UAV)

  • 이승철;채석봉;김주하
    • 한국가시화정보학회지
    • /
    • 제16권1호
    • /
    • pp.30-36
    • /
    • 2018
  • In the present study, we investigate the flow characteristics of a quadrotor UAV in a hovering mode by measuring multiple two-dimensional velocity fields in the wake. The experiment is conducted at Re = 24,000 in a chamber large enough to neglect the ground effect, where Re is the Reynolds number based on the rotor chord length and the rotor tip speed. The rotational speed of the rotor is determined by an optical tachometer so that the lift force can be balanced with the weight of the UAV. The velocity field measured on the center plane of the rotor shows that the vortices are shedding from the tip of the rotor, inducing large fluctuations in the streamwise velocity along the wake shear layer. The strength of the rotor-tip vortex shedding is asymmetric with respect to the rotor axis due to the interaction between the rotor and the wake centerline of each rotor is inclined to the center of the UAV due to the pressure difference caused by the induced velocity. The wake from each rotor moves closer to each other while traveling in the streamwise direction, and then is merged together inducing large fluctuations in the transverse velocity. Due to the wake merging, on the center plane of the UAV, the velocity increases in the streamwise direction showing two-peak structure in the streamwise velocity contours.

LPG자동차에서 밸브스템 표면거칠기가 누유특성에 미치는 영향에 관한 연구 (Surface Roughness Effects of a Valve Stem on the Leakage Characteristics in LPG Automotive)

  • 김청균;이일권
    • 한국가스학회지
    • /
    • 제11권4호
    • /
    • pp.1-6
    • /
    • 2007
  • 본 논문은 LPG 엔진에서 밸브스템의 표면거칠기가 오일 누설에 미치는 영향에 대한 실험적 결과를 제공하고자 한다. 밸브스템시일은 밸브스템과의 미세한 밀봉간극을 통해 유출하는 오일을 차단하기 위한 부품이다. 이들 두개의 부품사이에서 발생되는 밀봉성은 밸브스템과 밸브스템시일의 누유안전성과 수명연장에 관련된 중요한 요소이다. 본 실험결과에 의하면, 밸브스템의 표면거칠기를 중심선 표면거칠기, Ra로 나타낼 경우 $0.4{\sim}0.5{\mu}m$가 최적의 가공조건이고, 표면의 거칠기 단면형상은 균일하게 분포되도록 가공하는 것이 가장 이상적인 설계조건이 될 것이다. 기본적으로 매끄러운 밸브표면과 균일하게 분포된 거칠기 형상을 유지하는 것이 밸브스템과 밸브스템 시일장치의 간극을 통해 빠져나가는 누유량을 줄일 수 있다.

  • PDF