• Title/Summary/Keyword: Center-point error

Search Result 256, Processing Time 0.034 seconds

The Analysis of Measuring Error in OMM System (OMM 시스템에서의 측정오차 해석)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.34-42
    • /
    • 1998
  • This paper describes an analysis of measuring error of on the machine measuring(OMM) system which directly measures machined surface dimensions using scanning probe on a CNC milling machine. 21 inch TV shadow mask mould clamped to a pallet was measured using PTP(point to point) measuring algorithm in OMM system and the results were compared with those using coordinate measuring machine(CMM). The OMM error was evaluated by probe error, stylus contact error, center shift error, repeatability, work-piece clamping error and etc. The results show that elastic deformation of the pallet is most affecting factor on the measuring error, thus pallet design and clamping method need very careful cosiderations.

  • PDF

Error Correction Technique of Distance Measurement for ToF LIDAR Sensor

  • Moon, Yeon-Kug;Shim, Young Bo;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.960-973
    • /
    • 2018
  • This paper presents design for error correcting algorithm of the time of flight (ToF) detection value in the light detection and ranging (LIDAR) system sensor. The walk error of ToF value is generated by change of the received signal power depending on distance between the LIDAR sensor and object. The proposed method efficiently compensates the ToF value error by the independent ToF value calculation from the received signal using both rising point and falling point. A constant error of ~0.05 m is obtained after the walk error correction while an increasing error up to ~1 m is obtained with conventional method.

The Error Source Analysis of Measuring Data of OMM System (OMM 시스템의 측정오차 원인분석 및 대책)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.73-77
    • /
    • 1997
  • This paper describes the analysis of measuring error of on the machine measuring(OMM) system which can directly measure the three dimensional machined free surface dimension using scanning probe on milling machine. 21 inch TV shadow mask mould was measured using PTP(point to point)measurement algorithm at pallet clamped and unclamped state on OMM system, and using coordinate measuring machine(CMM) one after another. The OMM system was evaluated probe error, stylus contact error, center shift error, repeatability and so on. Consequencely, the conclusion derived that elastic displacement of pallet had effect on measuring error mainly, and pallet design and setup method would be important.

  • PDF

A Study On Positioning Of Mouse Cursor Using Kinect Depth Camera (Kinect Depth 카메라를이용한 마우스 커서의 위치 선정에 관한 연구)

  • Goo, Bong-Hoe;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.478-484
    • /
    • 2014
  • In this paper, we propose new algorithm for positioning of mouse cursor using fingertip direction on kinect depth camera. The proposed algorithm uses center of parm points from distance transform when fingertip point toward screen. Otherwise, algorithm use fingertip points. After image preprocessing, the center of parm points is calculated from distance transform results. If the direction of the finger towards the camera becomes close to the distance between the fingertip point and center of parm point, it is possible to improve the accuracy of positioning by using the center of parm point. After remove arm on image, the fingertip points is obtained by using a pixel on the long distance from the center of the image. To calculate accuracy of mouse positioning, we selected any 5 points. Also, we calculated error rate between reference points and mouse points by performed 500 times. The error rate results could be confirmed the accuracy of our algorithm indicated an average error rate of less than 11%.

Precise Measurement of Center of Gravity Using 3-Point Weighing Method (3점 측정방식을 사용한 무게중심의 정밀 측정)

  • Yoo I.J.;Lee S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.283-284
    • /
    • 2006
  • In this paper 3-point weighing method is adopted to measure the unbalance moment of small-sized precision spinning elements using electronic scales with 0.1 mgf resolution. Firstly methods to eliminate the fixture error and to reduce the effects of frictional force that is known as side effect, are proposed. A measuring system is developed and various experiments are performed to verify the proposed approach. The measured and calculated values are analysed in statistical methods, and this provides the errors of the measuring system. The results show that the proposed theory and test procedures gives reliable unbalance moments and gravitational centers.

  • PDF

A STUDY OF ESTIMATION GROUND SURFACE TEMPERATURE BY TIME-SHIFT PROCESSING

  • Yano, Koji;KAJIWARA, Koji;HONDA, Yoshiaki;Moriyama, Masao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.798-800
    • /
    • 2003
  • The time shift processing of ground measured surface temperature with the meteorological variables has no evaluated function. We introduce new evaluating function. To use this evaluating function, the algorithm of time-shift processing will be able to be reliable and get error-bar for all moving measured point's data. We will finally obtain the area averaged surface temperature by land observation.

  • PDF

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

Measurement of Gravity Center for Rotor Blades by Compensation of Machining Error in Jig (지그의 가공오차 보정에 의한 블레이드 무게 중심 측정)

  • Kong, Jae-Hyun;Kim, Ki-Sung;Ye, Sang-Don;Chun, See-Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.41-47
    • /
    • 2010
  • There are many unbalanced models such as helicopter's rotor blades, small-sized precision motor in industrial applications. In the real products, their gravity center usually does not accord with the desired gravity center. If the deviation is large between them, it can be a major cause of vibration and noise as the part of model rotate. Therefore the gravity center in the rotational parts should be controlled properly because of static and dynamic balancing of the parts. In the research, the rotor blade of unmanned helicopter has been selected to obtain the high quality of balancing. In order to achieve the purpose, measuring system has been developed. In the system applied principle is three point weighting method, which is one of the Multiple-point Weighting Method. It has circle fitting for compensation of machining error, after measuring the values. From this study, the results showed that the proposed measurement procedure gives reliable and precise gravity center.

A Fast Block Matching Algorithm Using Mean Absolute Error of Neighbor Search Point and Search Region Reduction (이웃 탐색점에서의 평균 절대치 오차 및 탐색영역 줄임을 이용한 고속 블록 정합 알고리듬)

  • 정원식;이법기;한찬호;권성근;장종국;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.128-140
    • /
    • 2000
  • In this paper, we propose a fast block matching algorithm using the mean absolute error (MAE) of neighbor search point and search region reduction. The proposed algorithm is composed of two stages. At the first stage,the search region is divided into nonoverlapped 3$\times$3 areas and MAE of the center point of each area iscalculated. The minimum MAE value of all the calculated MAE's is determined as reference MAE. At thesecond stage, because the possibility that final motion vector exist near the position of reference MAE is veryhigh, we use smaller search region than first stage, And, using the MAE of center point of each area, the lowerbound of rest search point of each area is calculated and block matching process is performed only at the searchpoints that the lower bound is smaller than reference MAE. By doing so, we can significantly reduce thecomputational complexity while keep the increasement of motion estimation error small.

  • PDF