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ON THE CONVERGENCE OF ISHIKAWA ITERATION WITH

ERRORS FOR REAL CONTINUOUS FUNCTIONS

Kittithat Boonpot and Satit Saejung

Abstract. We point out an error appeared in the paper of Yuan et al. [3]
and present a correction of their result under a more general assumption.

Moreover, we discuss the validity of the conditions imposed on the se-

quences of error terms.

1. Introduction

Iterative sequences are one of powerful tools in solving nonlinear equations.
Mann and Ishikawa iterations are two interesting iterative sequences which
have been studied and investigated by many authors. In this paper, we focus
on the problem of finding a fixed point of a continuous function defined on the
real line. More precisely, in this paper, we assume that R is the set of all real
numbers and f : R → R is a continuous function with the (probably empty)
fixed-point set Fix(f) := {p ∈ R : p = f(p)}. Suppose that {αn}∞n=1 and
{βn}∞n=1 are two sequences in [0, 1]. The following two iterative sequences are
known as Mann iteration and Ishikawa iteration.

Mann iteration: x1 ∈ R is arbitrarily chosen and

xn+1 := (1− αn)xn + αnf(xn), where n ≥ 1.

Ishikawa iteration: x1 ∈ R is arbitrarily chosen and

yn := (1− βn)xn + βnf(xn),

xn+1 := (1− αn)xn + αnf(yn), where n ≥ 1.

It is clear that Mann iteration can be deduced from Ishikawa iteration by letting
βn = 0 for all n ≥ 1. Borwein and Borwein [1] proved that if f : [a, b] → [a, b]
is continuous, then every iterative sequence generated by Mann iteration with
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞ converges to a fixed point of f . Yuan

and Liu [4] extended the result to Ishikawa iteration for a continuous function
f : E → E, where E is a closed (not necessarily bounded) interval.
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Theorem QQ. Suppose that E is a closed (not necessarily bounded) interval
and f : E → E is continuous. Suppose that {αn}∞n=1 and {βn}∞n=1 are two
sequences in [0, 1] such that limn→∞ αn = limn→∞ βn = 0 and

∑∞
n=1 αn =

∞. Then every iterative sequence {xn}∞n=1 generated by Ishikawa iteration
converges to a fixed point of f if and only if {xn}∞n=1 is bounded.

Yuan et al. [3] extended Theorem QQ, where the error in the computation
of the iterative sequence is allowed.

Theorem YCQ. Suppose that f : R → R is continuous. Suppose that {αn}∞n=1

and {βn}∞n=1 are two sequences in (0, 1] such that limn→∞ αn = limn→∞ βn = 0
and

∑∞
n=1 αn = ∞. Suppose that {un}∞n=1 and {vn}∞n=1 are two real sequences

satisfying the following two conditions:

(C1)
∑∞

n=1 |un| < ∞ and
∑∞

n=1 |vn| < ∞;
(C2) limn→∞ |un|/αn = limn→∞ |vn|/βn = 0.

Suppose that {xn}∞n=1 is generated by Ishikawa iteration with errors:

Ishikawa iteration with errors: x1 ∈ R is arbitrarily chosen and

yn := (1− βn)xn + βnf(xn) + vn,

xn+1 := (1− αn)xn + αnf(yn) + un, where n ≥ 1.

Then {xn}∞n=1 converges to a fixed point of f if and only if it is bounded.

Remark 1.1. It is worth noting that Theorem YCQ deals with only continuous
functions f : R → R. However, it can be applied for all continuous functions
g : E → E, where E is a closed interval, such that the iterative sequences are
defined in E as well. In fact, if g : E → E is continuous, then there exists a
continuous extension ĝ : R → R such that ĝ|E = g and Fix(ĝ) = Fix(g). A
constructive extension is given in Remark 2.3 of [3].

Unfortunately, there is a mistake in the proof of Theorem YCQ above con-
cerning the induction step (line 15 on page 233). In fact, the expression
|xm+1 − xM | = |um| + |vm| is not true. In this paper, we present a correc-
tion of Theorem YCQ with a more general assumption. Moreover, we also
discuss the validity of the conditions imposed on the sequence of error terms.

2. Main results

The following result improves and strengthens Theorem YCQ.

Theorem 2.1. Suppose that f : R → R is continuous. Suppose that {αn}∞n=1

and {βn}∞n=1 are two sequences in [0, 1] such that limn→∞ αn = limn→∞ βn = 0
and

∑∞
n=1 αn = ∞. Suppose that {un}∞n=1 and {vn}∞n=1 are two real sequences

satisfying the two following conditions:

(C1*)
∑∞

n=1(un + αnvn) is convergent;
(C2*) limn→∞ vn = 0.
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Suppose that {xn}∞n=1 is generated by Ishikawa iteration with errors. Then
{xn}∞n=1 converges to a fixed point of f if and only if it is bounded.

Proof. We assume that {xn}∞n=1 is bounded and hence {f(xn)}∞n=1 is bounded.
Since

yn = xn + βn(f(xn)− xn) + vn

and {vn}∞n=0 is bounded, it follows that {yn}∞n=1 is bounded and hence
{f(yn)}∞n=1 is bounded. In particular, it follows from limn→∞ βn = limn→∞ vn
= 0 that limn→∞(yn−xn) = 0. Note that limn→∞ un = limn→∞(un+αnvn) =
0. Similarly, it follows from limn→∞ αn = limn→∞ un = 0 that

lim
n→∞

(xn+1 − xn) = lim
n→∞

(
αn (f(yn)− xn) + un

)
= 0.

We now divide the proof into two steps.
Step 1: {xn} is a convergent sequence. Suppose that the assertion is not

true, that is, α := lim infn→∞ xn < lim supn→∞ xn =: β. We prove that if
γ ∈ (α, β), then γ = f(γ). To see this, let α < γ < β. Without loss of
generality, we assume that f(γ) > γ. By the continuity of f at γ, there exists
δ > 0 such that f(x)− x > 0 for all x ∈ R with |x− γ| < δ. For convenience,
we write

x̂n := xn +

∞∑
k=n

(uk + αkvk).

Note that lim infn→∞ x̂n = α and lim supn→∞ x̂n = β. Moreover,

lim
n→∞

(x̂n+1 − x̂n) = lim
n→∞

(xn+1 − xn − (un + αnvn)) = 0.

Since limn→∞(yn − xn) = limn→∞(un + αnvn) = 0, there exists an integer N
such that

x̂N > γ, |yn−xn| <
δ

4
, |x̂n+1− x̂n| <

δ

2
,

∣∣∣∣∣
∞∑

k=n

(uk + αkvk)

∣∣∣∣∣ < δ

4
for all n ≥ N .

We consider the following two cases.
Case 1. γ < x̂N < γ + δ

2 . This implies that

|xN − γ| ≤ |x̂N − γ|+

∣∣∣∣∣
∞∑

k=N

(uk + αkvk)

∣∣∣∣∣ < δ

2
+

δ

4
< δ.

It follows that f(xN )− xN > 0. Since |yN − xN | < δ
4 , we have

|yN − γ| ≤ |yN − xN |+ |xN − γ| < δ

4
+

3δ

4
= δ.

This implies that f(yN )− yN > 0 and hence

xN+1 = xN + αN (f(yN )− xN ) + uN

= xN + αN (f(yN )− yN ) + αN (yN − xN ) + uN

= xN + αN (f(yN )− yN ) + αN (βN (f(xN )− xN )) + uN + αNvN
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> xN + uN + αNvN .

In particular, x̂N+1 > x̂N > γ.
Case 2. x̂N ≥ γ + δ

2 . In this case, we have

x̂N+1 ≥ x̂N − |x̂N+1 − x̂N | > γ +
δ

2
− δ

2
= γ.

It follows from the two cases above that x̂N+1 > γ. We can prove by induction
that x̂n > γ for all n ≥ N and hence α = lim infn→∞ x̂n ≥ γ which is a
contradiction. This implies that γ = f(γ).

Let η := 1
4 (β − α) > 0. Since the series

∑∞
n=1(un + αnvn) converges and

limn→∞(yn − xn) = 0, there exists an integer M such that∣∣∣∣∣
∞∑

n=m

(un + αnvn)

∣∣∣∣∣ < η

4
, and |ym − xm| < η for all m ≥ M.

Since limn→∞(xn+1−xn) = 0, there exists K ≥ M such that |xK− 1
2 (α+β)| <

η
2 . We prove by induction that

xm+1 = xm + um + αmvm ∈
(
1

2
(α+ β)− η,

1

2
(α+ β) + η

)
for all m ≥ K.

The starting point of the induction is true because xK ∈ (α, β) and hence
f(xK) = xK . Since |yK − xK | < η, we have∣∣∣∣yK − 1

2
(α+ β)

∣∣∣∣ ≤ |yK − xK |+
∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣ < η +
η

2
=

3η

2
.

In particular, yK ∈ (α, β) and hence f(yK) = yK . This implies that

yK = (1− βK)xK + βKf(xK) + vK = xK + vK

and hence

xK+1 = (1− αK)xK + αKf(yK) + uK = xK + uK + αKvK .

Moreover, we have∣∣∣∣xK+1 −
1

2
(α+ β)

∣∣∣∣
≤

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+ |uK + αKvK |

=

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+
∣∣∣∣∣

∞∑
n=K

(un + αnvn)−
∞∑

n=K+1

(un + αnvn)

∣∣∣∣∣
≤

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+
∣∣∣∣∣

∞∑
n=K

(un + αnvn)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=K+1

(un + αnvn)

∣∣∣∣∣
<

η

2
+

η

4
+

η

4
= η.
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This implies that xK+1 ∈
(
1
2 (α+ β)− η, 1

2 (α+ β) + η
)
and the proof of the

initial step of the induction is done.
Assume that there exists m ≥ K and the induction hypothesis is true for all

integers j such that K ≤ j ≤ m. We show that

xm+2 = xm+1 + um+1 + αm+1vm+1 ∈
(
1

2
(α+ β)− η,

1

2
(α+ β) + η

)
.

Note that xm+1 = xm+um+αmvm ∈
(
1
2 (α+ β)− η, 1

2 (α+ β) + η
)
and hence

f(xm+1) = xm+1. Since |ym+1 − xm+1| < η, we have ym+1 ∈ (α, β) and hence
f(ym+1) = ym+1. This implies ym+1 = xm+1 + vm+1 and hence

xm+2 = (1− αm+1)xm+1 + αm+1f(ym+1) + um+1

= xm+1 + um+1 + αm+1vm+1.

In particular, we have

xm+2 = xK +

m+1∑
n=K

(un + αnvn).

Moreover, we have∣∣∣∣xm+2 −
1

2
(α+ β)

∣∣∣∣
≤

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+
∣∣∣∣∣
m+1∑
n=K

(un + αnvn)

∣∣∣∣∣
=

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+
∣∣∣∣∣

∞∑
n=K

(un + αnvn)−
∞∑

n=m+2

(un + αnvn)

∣∣∣∣∣
≤

∣∣∣∣xK − 1

2
(α+ β)

∣∣∣∣+
∣∣∣∣∣

∞∑
n=K

(un + αnvn)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=m+2

(un + αnvn)

∣∣∣∣∣
<

η

2
+

η

4
+

η

4
= η.

This implies that xm+2 ∈
(
1
2 (α+ β)− η, 1

2 (α+ β) + η
)
. We now complete the

proof of the induction. In particular,

lim sup
n→∞

xn = xK +

∞∑
n=K

(un + αnvn) ≤
1

2
(α+ β) +

η

2
+

η

4
=

1

2
(α+ β) +

3η

4
< β

which is a contradiction.
Step 2: limn→∞ xn = p for some p ∈ Fix(f). We assume from Step

1 that limn→∞ xn = p for some p ∈ R. We prove that f(p) = p. With-
out loss of generality, we suppose that f(p) > p. Note that limn→∞ yn = p
because limn→∞(xn − yn) = 0. This implies that limn→∞(f(xn) − xn) =
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limn→∞(f(yn)− yn) = f(p)− p. Then, there exists N such that f(xn)− xn >
1
2 (f(p)− p) > 0 and f(yn)− yn > 1

2 (f(p)− p) for all n ≥ N . Note that

xn+1 − xn = αn (f(yn)− yn) + αnβn(f(xn)− xn) + un + αnvn.

In particular,
∞∑

n=N

(xn+1−xn) =

∞∑
n=N

(
αn (f(yn)− yn)+αnβn(f(xn)−xn)

)
+

∞∑
n=N

(un+αnvn).

Since the series
∑∞

n=N (xn+1 − xn) and
∑∞

n=N (un + αnvn) are convergent, we
have

∞∑
n=N

(
αn (f(yn)− yn) + αnβn(f(xn)− xn)

)
is convergent.

Since f(xn)−xn > 1
2 (f(p)−p) > 0 and f(yn)−yn > 1

2 (f(p)−p) for all n ≥ N ,
we have

1

2
(f(p)− p)

∞∑
n=N

(αn + αnβn) is convergent.

This is impossible because
∑∞

n=N αn = ∞. The proof is finished. □

Remark 2.2. It is clear that (C1) =⇒ (C1*); and (C2) =⇒ (C2*). Moreover,
our result is a strict generalization of Theorem YCQ. In fact, the following
choices αn = βn := 1/

√
n and un = vn := (−1)n/n for all n ≥ 1 are applicable

in our result but not in Theorem YCQ.

Consequently, we obtain Mann type iteration with errors which is deduced
from Theorem 2.1 by letting βn = vn := 0 for all n ≥ 1.

Corollary 2.3. Suppose that f : R → R is continuous. Suppose that {αn}∞n=1

is a sequence in [0, 1] such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞ and suppose
that {un}∞n=1 is a real sequence such that

∑∞
n=1 un converges. Suppose that

{xn}∞n=1 is generated by

Mann iteration with errors: x1 ∈ R is arbitrarily chosen and

xn+1 := (1− αn)xn + αnf(xn) + un, where n ≥ 1.

Then {xn}∞n=1 converges to a fixed point of f if and only if it is bounded.

Finally we discuss the following result of Cholamjiak [2, Theorem 2.3]. Let
us recall his result.

Theorem Ch. Let E be a closed interval on R such that E + E ⊂ E and
let f : E → E be a continuous function. Let {un}∞n=1 and {vn}∞n=1 be two
sequences in E and let {xn}∞n=1 be generated by the following scheme: x1 ∈ E
and

yn := (1− βn)xn + βnf(xn) + vn,

xn+1 := (1− αn)yn + αnf(yn) + un for all n ≥ 1,

where {αn}∞n=1 and {βn}∞n=1 are sequences in [0, 1] satisfying the conditions:
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(A1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 βn < ∞;
(A2)

∑∞
n=1 |un| < ∞ and

∑∞
n=1 |vn| < ∞;

(A3) limn→∞ |un|/αn = limn→∞ |vn|/βn = 0.

Then {xn}∞n=1 converges to a fixed point of f if and only if it is bounded.

Remark 2.4. We remark the following issues on Theorem Ch.

(1) The condition E + E ⊂ E is not needed as discussed in Remark 1.1.
Moreover, this condition is very restricted. In fact, one can see that
any closed interval E such that E + E ⊂ E is of the form [a,∞) or
(−∞,−a] where a ≥ 0.

(2) The iterative scheme studied in Theorem Ch is nothing but the fol-
lowing Mann iteration with errors (of Corollary 2.3): x̂1 is arbitrarily
chosen and

x̂n+0.5 := (1− βn)x̂n + βnf(x̂n) + vn,

x̂n+1 := (1− αn)x̂n+0.5 + αnf(x̂n+0.5) + un for all n ≥ 1.

In particular, the conclusion of Theorem Ch follows from our Corollary
2.3 with the following weaker assumptions:
(A1*) limn→∞ αn = limn→∞ βn = 0 and

∑∞
n=1(αn + βn) = ∞;

(A2*)
∑∞

n=1(un + vn) converges.

3. A further discussion on Condition (C1*)

In this section, we show that Condition (C1*) on the real sequences {un}∞n=1

and {vn}∞n=1 is not too strong.

Definition. Suppose that {αn}∞n=1 and {βn}∞n=1 are two sequences in [0, 1]
such that limn→∞ αn = limn→∞ βn = 0 and

∑∞
n=1 αn = ∞. We say that

two real sequences {un}∞n=1 and {vn}∞n=1 are admissible if for every continuous
function f : R → R and for every bounded iterative sequence {xn}∞n=1 gener-
ated by Ishikawa iteration with errors it follows that {xn}∞n=1 converges to a
fixed point of f .

Theorem 3.1. Suppose that {αn}∞n=1 and {βn}∞n=1 are two sequences in [0, 1]
such that limn→∞ αn = limn→∞ βn = 0 and

∑∞
n=1 αn = ∞. If two real se-

quences {un}∞n=1 and {vn}∞n=1 are admissible and {
∑n

k=1(uk + αkvk)}
∞
n=1

is
bounded, then Condition (C1*) holds.

Proof. We assume that two real sequences {un}∞n=1 and {vn}∞n=1 are admissible
and {

∑n
k=1(uk + αkvk)}

∞
n=1

is bounded. Let f : R → R be defined by f(x) := x
for all x ∈ R and x1 := 0 and let

yn := (1− βn)xn + βnf(xn) + vn = xn + vn,

xn+1 := (1− αn)xn + αnf(yn) + un = xn + un + αnvn

for all n ≥ 1. Note that xn+1 =
∑n

k=1(uk+αkvk) and the sequence {xn}∞n=1 is
bounded. Since {un}∞n=1 and {vn}∞n=1 are admissible, it follows that limn→∞ xn

= p for some p ∈ R. Hence
∑∞

n=1(un + αnvn) is convergent. □
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