• Title/Summary/Keyword: Center of Buoyancy

Search Result 83, Processing Time 0.023 seconds

Dynamics modeling and performance analysis for the underwater glider (수중 글라이더의 운동특성을 고려한 동역학 모델링 및 운동성능 해석)

  • Nam, Keon-Seok;Bae, Jae-Hyeon;Jeong, Sang-Ki;Lee, Shin-Je;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.709-715
    • /
    • 2015
  • Underwater gliders do not typically have separate propellers for forward motion. They generate propulsive forces based on the difference between their buoyancy and gravity. They can control the volume from the buoyancy engine to adjust the propulsive force. In addition, the attitude of the underwater glider is controlled by a rubberless motion controller. The motion controller can change the mass center and moment of inertia of the inner moving mass. Owing to the change in these parameters, the attitude of the underwater glider is changed. In this study, we derive nonlinear, six degree of freedom (DOF) mathematical models for the motion controller and buoyancy engine. Using these equations, we perform dynamic simulations of the proposed underwater glider, and verify the suitability of the design and dynamic performances of the proposed underwater glider. We then perform the motion control simulation for the pitch and roll angle, and analyze the dynamic performance according to the pitch and roll angles.

Influence of Fuel concentration gradient on the Extinction Behavior in Buoyancy minimized Counterflow Diffusion Flame (부력을 최소화한 대향류 확산화염 소화거동에서 연료농도구배의 영향)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.379-381
    • /
    • 2014
  • Influence of fuel concentration gradient was investigated near flame extinction limit in buoyancy-suppressed non-premixed counterflow flame with triple co-flow burner. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in He-diluted non-premixed counter triple co-flow flame experiments. Flame stability map was presented based on flame extinction and oscillation near extinction limit. The stability map via critical diluent mole fraction with global strain rate was represented by varying outer and inner He-diluted mole fractions. The flame extinction modes could be classified into five: an extinction through the shrinkage of the outmost edge flame forward the flame center with and without self-excitation, respectively ((I) and (II)), an extinction via the rapid expansion of a flame hole while the outmost edge flame is stationary (III), both the outermost and the center edge flames oscillate, and then a donut shaped flame is formed or the flame is entirely extinguished (IV), a shrinkage of the outermost edge flame without self-excitation followed by shrinking or sustain the inner flame (V).

  • PDF

Effects of various densities and velocities on gaseous hydrocarbon fuel on near nozzle flow field under different laminar coflow diffusion flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Chung, Suk Ho;Choi, Jae Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.102-106
    • /
    • 2016
  • An experimental study on the flow characteristics under various laminar coflow diffusion flames was conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), ethylene ($C_2H_4$), and n-butane ($C_4H_{10}$) were used as the fuels. A coflow burner and the Schlieren imaging technique were used to observe the flow field of each fuel near the nozzle exit as well as the flow characteristics in the flames. The results show that a vortex with a density heavier than air appeared in n-butane near the nozzle exit with a strong negative buoyancy on the fuel steam. As the Reynolds number increased through the control of the fuel velocity of the n-butane flame, the vortices were greater and the vortex tips were moved up from the nozzle exit. In addition, the heated nozzle affected the flow fields of the fuel steam near the nozzle exit.

Effects of Fuel Nozzle Diameter in the Behavior of Laminar Lifted Flame (노즐 직경 변화가 층류부상화염 거동에 미치는 영향)

  • Kim, Tae-Kwon;Um, Hyen-Soo;Kim, Kyung-Ho;Ha, Ji-Soo;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Experimental study was conducted to clarify the importance of buoyancy effects in laminar lifted flames which have been well understood by cold jet similarity theory. To evaluate buoyancy effects, lifted flame behaviors were systematically observed in methane and propane lifted flames diluted with He as changing the fuel nozzle diameter from 0.1 to 6 mm. Important physical parameters such as fuel strength, flame stretch and flame curvature, which were derived through simple physical scaling laws, were estimated. It is experimentally proven that buoyancy effects are important in relatively large fuel nozzle diameter and large fuel dilution with He. The results of Chen et al., which displayed the existence of stably lifted flames for 0.5

  • PDF

Static performance analysis of deepwater compliant vertical access risers

  • Lou, Min;Li, Run;Wu, Wugang;Chen, Zhengshou
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.970-979
    • /
    • 2019
  • Compliant Vertical Access Risers (CVARs) are compliant systems that incorporate a differentiated geometric configuration that allows the exploitation of oil and gas in deepwater fields and enables a number of operational advantages in the offshore system. One of the main features of CVAR systems is that they allow direct intervention procedures to be applied to the well bore, enabling workover operations to be performed directly from the production platform. Based on the principles of virtual work and variation, a static geometric nonlinear equation of CVARs is derived and applied in this study. The results of this study show that the two ends of the riser as well as the transition region are subject to high stress, while the positions of the floating platform exert significant effects on the geometry of the riser configuration. Compliance and buoyancy factors should be set moderately to reduce the CVAR stress. In addition, the buoyancy modules should be placed in the lower region, in order to maximize the operation advantages of CVAR.

Influence of thermo-physical properties on solutal convection by physical vapor transport of Hg2Cl2-N2 system: Part I - solutal convection

  • Kim, Geug-Tae;Kim, Young-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.125-132
    • /
    • 2010
  • For typical governing dimensionless parameters of Ar = 5, Pr = 1.16, Le = 0.14, Pe = 3.57, Cv = 1.02, $Gr_s=2.65{\times}10^6$, the effects of thermo physical properties such as a molecular weight, a binary diffusivity coefficient, a partial pressure of component B on solutally buoyancy-driven convection (solutal Grashof number $Gr_s=2.65{\times}10^6$) are theoretically investigated for further understanding and insight into an essence of solutal convection occurring in the vapor phase during the physical vapor transport of a $Hg_2Cl_2-N_2$ system. The solutally buoyancy-driven convection is significantly affected by any significant disparity in the molecular weight of the crystal components and the impurity gas of nitrogen. The solutal convection in a vertical orientation is found to be more suppressed than a tenth reduction of gravitational accelerations in a horizontal orientation. For crystal growth parameters under consideration, the greater uniformity in the growth rate is obtained for either solutal convection mode in a vertical orientation or thermal convection mode in horizontal geometry. The growth rate is also found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet (원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

An Experimental Study on the Transition of Momentum Controlling Hydrogen Jet to Buoyant Jet (운동량제어 수소제트가 부양제트로 천이되는 현상에 대한 실험적 연구)

  • Won, S.H.;Chung, S.H.;Kim, J.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Transition of momentum-controlling hydrogen jet to buoyant jet is experimentally investigated in order to develop a prediction model for the moving trajectory of hydrogen leaked from hydrogen devices. In the experiments, room-temperature helium, that has a similar density to the hydrogen leaked from high pressure tank, is horizontally injected through a 4mm tube and its moving trajectory is visualized by the shadowgraph method. The moving trajectories are found to be parabolic, thereby exhibiting increasing influence of the buoyancy. In analyzing the experimental results, the vertical movement is assumed to be controlled by the buoyancy while the horizontal movement is controlled by the air entrainment caused by the initial momentum. The resealing based on this assumption yields a single curve fitting to the all experimental results.