• Title/Summary/Keyword: Center crack

Search Result 697, Processing Time 0.027 seconds

A robust identification of single crack location and size only based on pulsations of the cracked system

  • Sinou, Jean-Jacques
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.691-716
    • /
    • 2007
  • The purpose of the present work is to establish a method for predicting the location and depth of a crack in a circular cross section beam by only considering the frequencies of the cracked beam. An accurate knowledge of the material properties is not required. The crack location and size is identified by finding the point of intersection of pulsation ratio contour lines of lower vertical and horizontal modes. This process is presented and numerically validated in the case of a simply supported beam with various crack locations and sizes. If the beam has structural symmetry, the identification of crack location is performed by adding an off-center placed mass to the simply supported beam. In order to avoid worse diagnostic, it was demonstrated that a robust identification of crack size and location is possible if two tests are undertaken by adding the mass at the left and then right end of the simply supported beam. Finally, the pulsation ratio contour lines method is generalized in order to be extended to the case of rectangular cross section beams or more complex structures.

Automatic Measuring System Developement of Slab Inner Crack and Center Segregation (슬라브 내부 크랙 및 중심편석 자동 판정 시스템 개발)

  • Kim, Sung-Yong;Lee, Su-Hyun;Ahn, In-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.332-334
    • /
    • 2009
  • This thesis puts forward a suggestion of measuring inner crack and center segregation in steel processing by using scanner and image processing with sulfur printer. This is a system to scan according to the program, to choose the size of the specimen and to press the 'Measurement' button, come to a check result, to send the result to the server, and to save the data and check the measurement result in web. To sum up, there are three points in this system.

  • PDF

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

An Analysis for The Ductile Crack Growth (연성 균열성장의 해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 1990
  • This paper presents a methodology for predicting stable crack growth and instability of a cracked body under monotonically increasing load. It is based on a model that incremental crack extensions and load increments after fracture initiation occur by turns in sequence and the criterion that the crack grows by an incremebt .delta.a when the opening displacement at the current crack tip increases by a critical value V$_{c}$. It is shown that the value I$_{c}$ = V$_{c}$/ .delta. a is a material constant characterizing ductile crack growth resistance. Along with the fracture initiation toughness value, the constant is used for the calculation of the loads against crack extensions by adding up each increment. The specimen failure is defined to occur when the necessary load increment for crack extension is zero or when the limit load in the current ligament is reached. The predicted failure loads are in good agreement with the avaliable experimental failure loads for the compact and center-cracked tension specimens of 7075-T651, 2024-T351 aluminum alloys and 304 stainless steel.steel.

Experimental and Analytical Study on the Burst Pressure of Steam Generator Tubes with T-type Combination Cracks (증기발생기 전열관에 존재하는 T-형 복합 균열의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.38-43
    • /
    • 2005
  • Several nuclear power plants reported that they often found the combination cracks, which consist of longitudinal and circumferential cracks in the tubes. For the burst pressure of a tube with a single longitudinal or circumferential crack several experimental equations have been proposed in published literatures. But for the combination crack appropriate fracture criterion has not been proposed yet. In this study the burst pressures of a tube with a longitudinal crack or a T-type combination crack consisting of longitudinal and circumferential cracks were obtained experimentally and analytically. Fracture parameters such as crack opening angle (COA) were investigated by using elastic plastic analysis. Also the burst pressure far a T-type combination crack located near a tubesheet was considered to develop a length-based criterion. Because most of the axial, circumferential or combination cracks initiate in roll transition zone near the tubesheet.

Estimation of Elastic Fracture Mechanics Parameters for Slanted Axial Through-Wall Cracks for Leak-Before-Break and Crack Growth Analysis (파단전누설 해석 및 균열거동 평가를 위한 축방향 경사관통균열의 탄성 응력확대계수 및 균열열림변위)

  • Huh, Nam-Su;Shim, Do-Jun;Choi, Suhn;Park, Keun-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.725-726
    • /
    • 2008
  • This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed 3-dimensional (3-D) elastic finite element (FE) analyses. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the center of the crack were provided. These values were also tabulated for three selected points, i.e., the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed Leak-Before-Break analysis considering more realistic crack shape development.

  • PDF

Application Verification of AI&Thermal Imaging-Based Concrete Crack Depth Evaluation Technique through Mock-up Test (Mock-up Test를 통한 AI 및 열화상 기반 콘크리트 균열 깊이 평가 기법의 적용성 검증)

  • Jeong, Sang-Gi;Jang, Arum;Park, Jinhan;Kang, Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.95-103
    • /
    • 2023
  • With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens (측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구)

  • 김종한;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Plane-strain fatigue crack growth behavior of 7075-76 aluminium alloy was investigated by using side-grooved through-thickness center cracked tension(CCT) specimens. The effect of side-groove on the stress intensity factor value was examined. The effective thickness expression of $B_{e}$= $B_{o}$-( $B_{o}$-( $B_{ o-B_{n}^{2}}$ $B_{o}$ is the most appropriate to evaluate the stress intensity factor of side-grooved CCT specimen for fatigue testing. Fatigue crack growth rates can be well described by the effective stress intensity factor range based on closure measurements, for both side-grooved and uniform thickness specimens. Provided that the thickness of specimen meets the requirements for valid plane-strain fracture toughness, uniform thickness specimen data may be assumed to approximately represent the plane strain through-thickness crack growth behavior.ehavior.r.

Evaluation of Harmless Crack Size according to Residual Stress Depth of Induction Hardened SCM440 Steel (유도경화한 SCM440 강의 잔류응력 깊이에 따르는 무해화 균열 크기 평가 )

  • Jong-Kyu Park;Ki-Hang Shin;Byoung-Chul Choi;In-Duck Park;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.571-576
    • /
    • 2023
  • In this study, the harmless crack size(ahml) according to the residual stress depth was evaluated using the fatigue limit of SCM440 steel by quenching-tempering(QT) and induction hardening(IH), and threshold stress intensity factor of QT steel. Because the residual stress increased rapidly as the crack depth increased, ahml was determined at the depth of all the crack aspect ratio(As) regardless of Type I-III, and ahml also increased according to the residual stress depth. ahml was minimal at As=1.0 and maximal at As=0.1, but was almost similar on each Type. ahml was small the dependence on As.