• Title/Summary/Keyword: Center Removal rate

Search Result 373, Processing Time 0.028 seconds

Development of Constructed Wetland using Sand and Oyster shell for Sewage Treatment (모래와 굴패각을 이용한 인공습지 오수처리장치 개발)

  • Park, Hyun-Geoun;Lee, Chun-Sik;Lee, Hong-Jae;Seo, Dong-Cheol;Heo, Jong-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.437-446
    • /
    • 2004
  • To develop sewage treatment apparatus by natural purification method, the sewage treatment plant that consisted of aerobic and anaerobic plot was constructed. And then, the effects of treatment conditions on the removal of pollutants in the relation to sewage loading, sewage injection method and season according to the pebble kind. Removal rate of BOD and COD according to the sewage loading in effluent were over 95 and 77%, respectively. Removal rate of nitrogen in treated water by aerobic plot and effluent using sand were about 22~40 and 49~75%, respectively. Those of effluent using sand 75%+ oyster shell 25% and sand 50%+ oyster shell 50% as filter media in comparison with using sand were about 7~25 and 16~23%, respectively. Removal rate of phosphorus in treated water by aerobic plot and effluent using sand as filter media were about 30~36 and 52~56%, respectively. Those of effluent using sand 75%+ oyster shell 25% and sand 50%+ oyster shell 50% in comparison with using sand as filter media were about 11~40 and 12~45%, respectively. Removal efficiency of BOD and COD according to the intermittent injection method of sewage were slightly decreased, but those of nitrogen and phosphorus were little varied in comparison with continuous injection method. Removal efficiency of BOD and COD in winter in comparison with the others were little varied, but those of nitrogen and phosphorus slightly decreased.

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

A Study on DOE Method to Optimize the Process Parameters for Cu CMP (구리 CMP 공정변수 최적화를 위한 실험계획법(DOE) 연구)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. Copper has been the candidate metallization material for ultra-large scale integrated circuits (ULSIs), owing to its excellent electro-migration resistance and low electrical resistance. However, it still has various problems in copper CMP process. Thus, it is important to understand the effect of the process variables such as turntable speed, head speed, down force and back pressure are very important parameters that must be carefully formulated in order to achieve desired the removal rates and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the main effect of the variables and the interaction between the various parameters during CMP. A better understanding of the interaction behavior between the various parameters and the effect on removal rate, non-uniformity and ETC (edge to center) is achieved by using the statistical analysis techniques. In the experimental tests, the optimum parameters which were derived from the statistical analysis could be found for higher removal rate and lower non-uniformity through the above DOE results.

A Study on the Removal Characteristics of Organic matter and Bacteria with the Use of Ozone (오존을 이용한 유기물 및 세균의 제거 특성에 관한 연구)

  • Lee, Kwan-Young;Park, Sang-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • The aim of this study is to measure the removal characteristics of organic matter and bacteria with the use of ozone to reduce the problems caused by bacteria and organic matter which appear in sea-water is summer season. When the total input of ozone was $1.4mg/{\ell}O_3$, the removal rate of bacteria and E-coli from sea-water proved to be 100%. With the same input of ozone, on the other hand, the removal rate of COD turned to be relatively low, 50%, which was to the fact that sea-water consists of salt matter which is a kind of COD matter. This result supports the idea that we can keep using ozone steadily in the future to remove organic matters and bacteria from sea-water because ozone destructs relatively less salt matter in sea-water. Also, the treatment effect rate of SS, turbidity and organic matters such as $NH_3$-N, $NO_3$-N etc, was very high. As a result, we assume that the treatment of organic matter in sea-water with ozone is very effective

  • PDF

The Study on Burr Removal Rate Along the Cutting Radial Distance in U-type Flow Channel (절삭 반경에 따른 U-type 유로 형상의 버 제거율에 관한 연구)

  • Son, Chul-Bae;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.8-13
    • /
    • 2019
  • As increasing demand for precise machining in advanced disciplines, especially in semi-conductor, aeronautical and automotive industries, the magnetic abrasive deburring(MAD) which is able to eliminate micro-sized burr on complex surface in less time has drawn the attention in the last decades. However, the performance of MAD is subject to shape and size of a tool. Therefore, this study aim to identify deburring behavior of MAD in U-type flow channel by measuring the length rate of burr removal in radial distance of the cylindrical tool under four process factors. In order to evaluate the deburring effect of MAD on the surface, finishing regions are divided based on center of the circular cutting tool. As a results, it was defined that the amount of burr removal in a downward direction moving toward flow channel from the top surface was higher than upward direction. This is because the magnetic abrasives were detached from magnetic lines of force due to geometrical shape.

Removal of Low Concentration Ammonia Nitrogen using a Packed Bed Bioreactor Immobilized with Nitrifier Consortium (질화세균을 고정화한 충전층 생물반응기에서 저농도 암모니아성 질소 제거)

  • Lee, Chang-Keun;Kim, Byong-Jin;Lee, Min-Su;Kim, Yong-Ha;Suh, Kuen-Hack
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.16-21
    • /
    • 2007
  • This study estimated the effect of hydraulic residence time(HRT), influent total ammonia nitrogen(TAN) concentration, temperature and pH in the packed-bed bioreactor using immobilized nitrifiers. Removal rate of ammonia nitrogen was increased with decreasing HRT and the optimum HRT was 0.2 hour when influent TAN was $2g/m^3$. At this point, removal rate was $226.1\;g/m^3{\cdot}day$ and removal efficiency was 88.8%. Removal rate of ammonia nitrogen was Increased with increasing TAN concentration. Removal rate and efficiency of ammonia nitrogen were kept constant at $20{\sim}35^{\circ}C$ and pH $8{\sim}9$ value.

  • PDF

Performance of heat sinks for LED luminaires in office buildings - Focused on the variation of air flow rate in duct - (사무소건물의 LED조명기구 방열장치의 성능 분석 연구 - 덕트 내 유량변화 중심으로 -)

  • Park, Ji-Woo;Ahn, Byung-Lip;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong;Song, Kyoo-dong
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.81-86
    • /
    • 2014
  • In recent years, many researchers have considered the building energy consumption reduction accordingly to deal with abnormal climate changes and greenhouse gas reduction. However, the lighting energy use ratio has increased in spite of the development of the high efficiency lighting device. Therefore, the study aims to produce the LED lighting applications for the effective lighting heat removal by using the heat characteristics of LED lighting and analyzing the heat removal effect. In order to increase radiant heat efficiency, the heat pipe and heat sink was attached on PCB as LED lighting applications. Experiment was conducted to verify the temperature and air velocity of inside duct: thermocouples, anemometer. The heat removal effect of LED lighting applications was measured by observing the temperature of the lighting applications and the change of air velocity in duct. The experiment shows that the temperature change in the duct according to air velocity was $0.9{\sim}5.8^{\circ}C$. It is also concluded that heat removal was calculated from 33 to 81W.

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.

Hot Air Injection/Extraction Method for the Removal of Semi-Volatile Organic Contaminants from Soils (토양내 저휘발성 유류오염물 제거를 위한 고온공기 주입/추출기술 연구)

  • Gu Chung-Wan;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • Contamination of soils and groundwater by leakage of petroleum compounds from underground storage tanks (USTs) has become great environmental issues. Conventional methods such as soil vapor extraction (SVE) used for the remediation of unsaturated soils contaminated with volatile organic compounds might not be applied for the removal of semi-volatile organic compounds such as diesel fuels and PCBs, which have low volatility and high hydrophobicity. The objective of this study is to develop a hot air injection method to remove semi-volatile compounds. Additionally, operation parameters such as temperature, air flow rate, and water content are evaluated. Experimental results show that diesel ranged organics (DROs) are removed in the order of volatility of organic compounds. As expected, removal efficiency of organics is highly dependent on the temperature. It is considered that more than $90\%$ of organic contaminants whose carbon numbers range between 17 and 22 can be removed efficiently by the hot air injection-extraction method (modified SVE) over the $100^{\circ}C$. It is also found that increased air flow rate resulted in high removal rate of contaminants. However, air flow rate over 40 cc/min is not effective for the operation aspects, due to mass transfer limitation on the volatilization rate of the contaminants. The effect of the water content on the decane removal is minimal, but some components show large dependence on the removal efficiency with increasing water content.