• Title/Summary/Keyword: Center Pixel

Search Result 423, Processing Time 0.029 seconds

A Study on Gender Classification Based on Diagonal Local Binary Patterns (대각선형 지역적 이진패턴을 이용한 성별 분류 방법에 대한 연구)

  • Choi, Young-Kyu;Lee, Young-Moo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.39-44
    • /
    • 2009
  • Local Binary Pattern (LBP) is becoming a popular tool for various machine vision applications such as face recognition, classification and background subtraction. In this paper, we propose a new extension of LBP, called the Diagonal LBP (DLBP), to handle the image-based gender classification problem arise in interactive display systems. Instead of comparing neighbor pixels with the center pixel, DLBP generates codes by comparing a neighbor pixel with the diagonal pixel (the neighbor pixel in the opposite side). It can reduce by half the code length of LBP and consequently, can improve the computation complexity. The Support Vector Machine is utilized as the gender classifier, and the texture profile based on DLBP is adopted as the feature vector. Experimental results revealed that our approach based on the diagonal LPB is very efficient and can be utilized in various real-time pattern classification applications.

  • PDF

Enhancement of Color Images with Blue Sky Using Different Method for Sky and Non-Sky Regions

  • Ghimire, Deepak;Pant, Suresh Raj;Lee, Joonwhoan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.215-218
    • /
    • 2013
  • In this paper, we proposed a method for enhancement of color images with sky regions. The input image is converted into HSV space and then sky and non-sky regions are separated. For sky region, saturation enhancement is performed for each pixel based on the enhancement factor calculated from the average saturation of its local neighborhood. On the other hand, for the non-sky region, the enhancement is applied only on the luminance value (V) component of the HSV color image, which is performed in two steps. The luminance enhancement, which is also called as dynamic range compression, is carried out using nonlinear transfer function. Again, each pixel is further enhanced for the adjustment of the image contrast depending upon the center pixel and its neighborhood pixel values. At last, the original H and V component image and enhanced S component image for the sky region, and original H and S component image and enhanced V component image for the non-sky region are converted back to RGB image.

Color and Luminance Compensation for Large AMOLEDs

  • Park, Kyong-Tae;Arkipov, Alexander;Lee, Baek-Woon;Kim, Seon-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.850-853
    • /
    • 2009
  • Many well-known pixel compensation circuits have been applied to control TFT $V_{th}$ variations on small size AMOLED panels. For large (>30-inch) AMOLEDs, luminance and color uniformity are affected by TFT variations, but also by ELVDD IR drop and cavity non-uniformity which are not easily compensated by in-pixel circuits. AMOLED panels may also suffer from manufacturing-induced mura. An external compensation method based on optical measurements is proposed and applied to large AMOLED panels. It improves luminance uniformity by up to 95% at 200nits and color uniformity by up to 99% (${\Delta}$u'v' <0.004) on large AMOLED panels, and provides-increased margin against processinduced mura.

  • PDF

Writable Cholesteric Liquid Crystal Display and the algorithm used to detect its image

  • Lee, Da-Wei;Shiu, Jyh-Wen;Sha, Yi-An;Chang, Yu-Pei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.356-359
    • /
    • 2007
  • Writable Cholesteric Liquid Crystal Display and the algorithm used to detect its image were developed. We could use any hard tip, ex: the tip of a forefinger, to directly write an image on the surface of Cholesteric Liquid Crystal Display (CHLCD). By measuring the capacitance of one pixel of test cell (12mm x 15mm/1x1), F-state or P-state could be detected. By measuring the capacitance of one pixel of 4.1" CHLCD (241um x 241um/ 320x320), F-state or Pstate could not be detected, due to the effect of parasitic capacitance. Therefore, high frequency measurement and the algorithm were developed to detect the image on CHLCD.

  • PDF

Development with multi-layer passivation films for OLED with longer life time

  • Jung, Jae-Hoon;Lim, Jong-Sun;Rhee, Jung-Soo;Kim, Hoon;Lee, Sang-Pil;Kim, Nam-Deog;Ju, Byeong-Kwon;Lee, Joo-Won;Chung, Kyu-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.684-687
    • /
    • 2004
  • We have developed multi-layer passivation films of UV-polymerized film/inorganic composite film to improve the long lifetime of passivated OLEDs for very thin flat panel applications. Preliminary lifetime to half initial luminance ($L_{o}{\sim}\;3,000\;cd/m^2$) of order 300 Hr is achieved on the conventional encapsulated test pixel using a passive matrix drive at room temperature; 570 Hr lifetime is achieved on a de tested multi-layer passivated 9$mm^2$ test pixel.

  • PDF

Cost competitive Pixel Structures for Mobile PVA LCDs

  • Cho, Seon-Ah;Lyu, Jae-Jin;Sohn, Ji-Won;Park, Jin-Won;Park, Seung-Beom;Yang, Sung-Hoon;Jung, Mee-Hye;Kim, Kyeong-hyeon;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1639-1641
    • /
    • 2007
  • We have designed cost competitive pixel structures for high performance mobile PVA LCDs. These new structures significantly bring down the price by the use of a conventional polarizer for lowest possible cost. A 4.3" prototype based on these techniques was built, achieving the world's highest mobile display contrast ratio of 1200:1, while maintaining wide viewing angle with no loss of transmittance

  • PDF

Improved Responsivity of an a-Si-based Micro-bolometer Focal Plane Array with a SiNx Membrane Layer

  • Joontaek, Jung;Minsik, Kim;Chae-Hwan, Kim;Tae Hyun, Kim;Sang Hyun, Park;Kwanghee, Kim;Hui Jae, Cho;Youngju, Kim;Hee Yeoun, Kim;Jae Sub, Oh
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.366-370
    • /
    • 2022
  • A 12 ㎛ pixel-sized 360 × 240 microbolometer focal plane array (MBFPA) was fabricated using a complementary metaloxide-semiconductor (CMOS)-compatible process. To release the MBFPA membrane, an amorphous carbon layer (ACL) processed at a low temperature (<400 ℃) was deposited as a sacrificial layer. The thermal time constant of the MBFPA was improved by using serpentine legs and controlling the thickness of the SiNx layers at 110, 130, and 150 nm on the membrane, with response times of 6.13, 6.28, and 7.48 msec, respectively. Boron-doped amorphous Si (a-Si), which exhibits a high-temperature coefficient of resistance (TCR) and CMOS compatibility, was deposited on top of the membrane as an IR absorption layer to provide heat energy transformation. The structural stability of the thin SiNx membrane and serpentine legs was observed using field-emission scanning electron microscopy (FE-SEM). The fabrication yield was evaluated by measuring the resistance of a representative pixel in the array, which was in the range of 0.8-1.2 Mohm (as designed). The yields for SiNx thicknesses of SiNx at 110, 130, and 150 nm were 75, 86, and 86%, respectively.

Salt and Pepper Noise Removal using Linear Interpolation and Spatial Weight value (선형 보간법 및 공간 가중치를 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1383-1388
    • /
    • 2016
  • Although image signal processing is used in many fields, degradation takes place in the process of transmitting image data by several causes. CWMF, A-TMF, and AWMF are the typical methods to eliminate noises from image data damaged under salt and pepper noise environment. However, those filters are not effective for noise rejection under highly dense noise environment. In this respect, the present study proposed an algorithm to remove in salt and pepper noise. In case the center pixel is determined to be non-noise, it is replaced with original pixel. In case the center pixel is noise, it segments local mask into 4 directions and uses linear interpolation to estimate original pixel. And then it applies spatial weight to the estimated pixel. The proposed algorithm shows a high PSNR of 24.56[dB] for House images that had been damaged of salt and pepper noise(P = 50%), compared to the existing CWMF, A-TMF and AWMF there were improvements by 16.46[dB], 12.28[dB], and 12.32[dB], respectively.

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

implementation and its limitations

  • Nahm, Kie-B.;Shin, Eun-S.;Ryoo, Seok-M.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.90-93
    • /
    • 1997
  • The shallow depth of focus in conventional light microscopy hinders the observation of the whole image when the object is thicker than the depth of field. Most of the existing techniques measured the object distance, which is not necessarily the actual distance of each pixel in the image. We implemented a means of determining the "best focus" of each pixel and located the height of object points by sectioning at different sample heights. Combining the height information and its gray values together, we obtained an image where the blur from the finite depth of focus is eliminated. Limitations of the technique are discussed together with composed images.ed images.