• Title/Summary/Keyword: Center Force

Search Result 2,576, Processing Time 0.031 seconds

Comparative Study of Stator Core Composition in Transverse Flux Rotary Machine

  • Lee, Ji-Young;Moon, Seung-Ryul;Koo, Dae-Hyun;Kang, Do-Hyun;Lee, Geun-Ho;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.350-355
    • /
    • 2011
  • This paper deals with the comparison of magnetic characteristics in transverse flux rotary machine according to different stator core composition with the same rotor. Three different stator designs are considered in the analysis according to the material composition of inner and outer stator cores. Electromotive force (EMF), inductance, torque, and core losses are calculated by threedimensional finite element analysis. Calculated and measured results of back-EMF according to the analysis models in dependency on speed are presented.

Magnetization Behavior of Co Nanodot Array

  • Chang, Joon-Yeon;Gribkov, B.A.;Kim, Hyung-Jun;Koo, Hyun-Cheol;Han, Suk-Hee;Mironov, V.L.;Fraerman, A.A.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.17-20
    • /
    • 2007
  • We performed magnetic force microscopy (MFM) observation on array of Co dots in order to understand magnetic state and magnetization behavior of submicron sized Co dots patterned on GaMnAs bridge. MFM observations showed the magnetization reversal and processes of local magnetization of individual ferromagnetic Co nanodots. Magnetic state of Co dots either single domain or vortex is dependent on geometrical size and thickness. Transition from single domain to vortex state can be realized with MFM tip assisted local field. Magnetization reversal process takes place through sequential reversal of individual dots. Localized inhomogeneous magnetic field can be manipulated by controlling magnetic state of individual Co dot in the array structure.

Analysis of Plantar Pressure Differences between Flat Insole Trekking Shoes and Nestfit Trekking Shoes (네스핏 트레킹화와 평면 인솔 트레킹화의 족저압력 분석)

  • Choi, Jae-Won;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.475-482
    • /
    • 2015
  • Objective : The purpose of this study was to investigate mean plantar foot pressure, maximum plantar pressure and ground reaction force, and center migration path of pressure according to the type of trekking shoes for the development of shoes. Method : Subjects of the study averaged $22.10{\pm}2.05years$ of age. Their average height was $169.27{\pm}7.62cm$ and their average weight was $64.34{\pm}10.22kg$. The method of this study was administered measuring 50 steps, at once, 3 times at a speed of 4 km/h and using the data of 30 steps. Pedar-X system measured the mean foot pressure, maximum foot pressure, mean maximum force, and center migration path of pressure by subjects' position while walking. Statistical analysis was performed by SPSS 23.0 using a paired t-test. Results : Results of the study showed Nestfit trekking shoes lower foot pressure of both feet in mean foot pressure and maximum foot pressure. Nestfit trekking shoes showed high ground reaction force (p<.001) in the midfoot, and low mean ground reaction force in the rearfoot. The center migration path of pressure showed the Nestfit trekking shoes were more stable than flat insole trekking shoes. Conclusion : It can be concluded that wearing Nestfit trekking shoes spreads pressure efficiently and induces walking stability because Nestfit trekking shoes spread the pressure of the forefoot and rearfoot to the midfoot and the center migration path of pressure shows regularly.

The Stress Distribution Analysis of PEMFC GDL using FEM (유한요소법을 이용한 고분자전해질연료전지 기체확산층의 응력분포 연구)

  • Kim, Chulhyun;Sohn, Youngjun;Park, Gugon;Kim, Minjin;Lee, Jonguk;Kim, Changsoo;Choi, Yusong;Cho, Sungbaek
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.468-475
    • /
    • 2012
  • A proper stacking force and assembly are important to the performance of fuel cell. Improper assembly pressure may lead to leakage of fuels and high interfacial contact resistance, excessive assembly pressure may result in damage to the gas diffusion layer and other components. The pressure distribution of gas diffusion layer is important to make interfacial contact resistance less for stack performance. To analyze the influence of design parameter factors for pressure distribution, and to optimize stack design, DOE (Design of Experiment) was used for polymer electrolyte membrane fuel cell stack pressure test. As commonly known, the higher clamping force improves the fuel cell stack performance. However, non-uniformity of stress distribution is also increased. It shows that optimization between clamping force and stress distribution is needed for well designed structure of fuel cell stack. In this study, stack design optimization method is suggested by using FEM (Finite Element Methode) and DOE for light-weighted fuel cell stack.

Partial pulp necrosis caused by excessive orthodontic force (과도한 교정력에 의한 부분 치수괴사: 증례보고)

  • Kim, Min-Young;Lee, Seung-Jong;Jung, Il-Young;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.149-153
    • /
    • 2011
  • As the dental pulp is encased with a rigid, noncompliant shell, changes in pulpal blood flow or vascular tissue pressure can have serious implication for the health of pulp. Numerous studies have demonstrated that orthodontic force application may influence both blood flow and cellular metabolism, leading degenerative and/or inflammatory responses in the dental pulp. The aim of this case report is to present a case about tooth with chronic periapical abscess which showed normal vital responses. Excessive orthodontic force is thought to be the prime cause of partial pulp necrosis. Owing to remaining vital tissue, wrong dianosis can be made, and tooth falsely diagnosed as vital may be left untreated, causing the necrotic tissue to destroy the supporting tissuses. Clinician should be able to utilize various diagnostic tools for the precise diagnosis, and be aware of the endodontic-orthodontic inter-relationship.

Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound (아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구)

  • Ko, Sang Min;Choi, Hee Seok;Son, Woo Jung;Kang, Sin Jung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.49-56
    • /
    • 2014
  • In this study, properties of adhesion between adhesion promoter-containing rubber compound and zinc coated steel cord was investigated. Cobalt salt, resorcinol formaldehyde resin (RF resin) and hexamethoxymethylmelamine (HMMM) were used to adhesion promoter. Since cobalt salts accelerate sulphidation rate of zinc at zinc coated steel cord surface, pullout force of rubber compound applying cobalt salts was increased compared to that of rubber compound without applying cobalt salts. Pullout force and rubber coverage of rubber compounds applying all adhesion promoters were superior because strong interlocking between rubber matrix increased modulus due to applying RF resin and HMMM and grown zinc sulfides at zinc coated steel cord surface.

Design of High Performance Reinforced Concrete Pile for Improvement of Seismic Performance (내진성능 향상을 위한 고성능 철근콘크리트 말뚝 설계에 관한 연구)

  • Park, Chan Sik;Cho, Jeong-Rae;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin;Choi, Myung Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • Recent changes in the construction method of piles to minimize noise, along with the development of high-strength reinforcement, have provided an economical high performance RC pile development to compensate for the disadvantages of existing PHC piles. In this study, a methodology for the development of cross - section details of high performance RC piles of various performances is presented by freely applying high strength steel and concrete. This study suggested a technique for calculating bending moments for a given axial force corresponding to the allowable crack widths and this can be used for serviceablity check. In calculating the design shear force, the existing design equation applicable to the rectangular or the I section was modified to be applicable to the hollow circular section. In particular, in the limit state design method, the shear force is calculated in proportion to the axial force, and the procedure for calculating PV diagram is established. Last, the section details are determined through PM diagrams that they have the similar flexural and axial-flexural performances of the PHC pile A, B and C types with a diameter of 500 mm. To facilitate the application of the selected standard sections to the practical tasks, the design PM diagram and design shear forces are proposed in accordance with the strength design method and limit state design method.

A Study on the Design of Dynamic System and Vibration Isolation System in a High-speed Press (고속프레스의 다이나믹 시스템 및 방진시스템 설계에 관한 연구)

  • Suh, Jin Sung;Jeong, Chel-Jea;Hyeon, Gi-Yong;Ryoo, Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.856-865
    • /
    • 2015
  • In a high-speed press, numerous moving links are interconnected and each link executes a constrained motion at high speed. As a consequence, high-level dynamic unbalance force and unbalance moment are transmitted to the main frame of the press, which results in unwanted vibration and significantly degrades manufacturing accuracy. Dynamic unbalance force and unbalance moment inevitably transmits high-level vibrational force to the foundation on which the press is installed. Minimizing the vibrational force transmitted to the foundation is critical for the protection of both the operators and the surrounding structures. The whole task should be carried out in two steps. The first step is to reduce dynamic unbalance based upon kinematic and dynamic analyses. The second step is to design and build an optimal vibration isolation system minimizing the vibrational force transmitted to the foundation. Firstly, the dynamic design method is presented to reduce dynamic unbalance force and moment. For this a 3D CAD software was utilized and a computer program was written to compute dynamic unbalance force and moment. Secondly, the design method for vibration isolation system is presented. The method for designing coil springs and viscous dampers are explained in detail.

Buckling resistance, torque, and force generation during retreatment with D-RaCe, HyFlex Remover, and Mtwo retreatment files

  • Yoojin Kim ;Seok Woo Chang;Soram Oh
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.10.1-10.9
    • /
    • 2023
  • Objectives: This study compared the buckling resistance of 3 nickel-titanium (NiTi) retreatment file systems and the torque/force generated during retreatment. Materials and Methods: The buckling resistance was compared among the D-RaCe (DR2), HyFlex Remover, and Mtwo R25/05 retreatment systems. J-shaped canals within resin blocks were prepared with ProTaper NEXT X3 and obturated by the single-cone technique with AH Plus. After 4 weeks, 4 mm of gutta-percha in the coronal aspect was removed with Gates-Glidden drills. Retreatment was then performed using DR1 (size 30, 10% taper) followed by DR2 (size 25, 4% taper), HyFlex Remover (size 30, 7% taper), or Mtrwo R25/05 (size 25, 5% taper) (15 specimens in each group). Further apical preparation was performed with WaveOne Gold Primary. The clockwise torque and upward force generated during retreatment were recorded. After retreatment, resin blocks were examined using stereomicroscopy, and the percentage of residual filling material in the canal area was calculated. Data were analyzed using 1-way analysis of variance with the Tukey test. Results: The HyFlex Remover files exhibited the greatest buckling resistance (p < 0.05), followed by the Mtwo R25/05. The HyFlex Remover and Mtwo R25/05 files generated the highest maximum clockwise torque and upward force, respectively (p < 0.05). The DR1 and DR2 files generated the least upward force and torque (p < 0.05). The percentage of residual filling material after retreatment was not significantly different between file systems (p > 0.05). Conclusions: NiTi retreatment instruments with higher buckling resistance generated greater clockwise torque and upward force.

Evaluation of the mechanical properties of current biliary selfexpandable metallic stents: axial and radial force, and axial force zero border

  • Wataru Yamagata;Toshio Fujisawa;Takashi Sasaki;Rei Ishibashi;Tomotaka Saito;Shuntaro Yoshida;Shizuka No;Kouta Inoue;Yousuke Nakai;Naoki Sasahira;Hiroyuki Isayama
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.633-649
    • /
    • 2023
  • Background/Aims: Mechanical properties (MPs) and axial and radial force (AF and RF) may influence the efficacy and complications of self-expandable metallic stent (SEMS) placement. We measured the MPs of various SEMSs and examined their influence on the SEMS clinical ability. Methods: We evaluated the MPs of 29 types of 10-mm SEMSs. RF was measured using a conventional measurement device. AF was measured using the conventional and new methods, and the correlation between the methods was evaluated. Results: A high correlation in AFs was observed, as measured by the new and conventional manual methods. AF and RF scatterplots divided the SEMSs into three subgroups according to structure: hook-and-cross-type (low AF and RF), cross-type (high AF and low RF), and laser-cut-type (intermediate AF and high RF). The hook-and-cross-type had the largest axial force zero border (>20°), followed by the laser-cut and cross types. Conclusions: MPs were related to stent structure. Hook-and-cross-type SEMSs had a low AF and high axial force zero border and were considered safest because they caused minimal stress on the biliary wall. However, the increase in RF must be overcome.