• Title/Summary/Keyword: Censored nonlinear model

Search Result 8, Processing Time 0.021 seconds

THE CENSORED REGRESSION QUANTILE ESTIMATORS FOR NONLINEAR REGRESSION MODEL

  • Park, Seung-Hoe
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.373-384
    • /
    • 2003
  • In this paper, we consider the asymptotic properties of regression quantile estimators for the nonlinear regression model when dependent variables are subject to censoring time, and propose the sufficient conditions which ensure consistency and asymptotic normality for regression quantile estimators in censored nonlinear regression model. Also, we drive the asymptotic relative efficiency of the censored regression model with respect to the ordinary regression model.

Asymptotics Properties of LAD Estimators in Censored Nonlinear Regression Model

  • Park, Seung-Hoe;Kim, Hae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.101-112
    • /
    • 1998
  • This paper is concerned with the asymptotic properties of the least absolute deviation estimators for the nonlinear regression model when dependent variables are subject to censoring time, and proposed the simple and practical sufficient conditions for the strong consistency and asymptotic normality of the least absolute deviation estimators in censored regression model. Some desirable asymptotic properties including the asymptotic relative efficiency of proposed model with respect to standard model are given.

  • PDF

THE STRONG CONSISTENCY OF THE ASYMMETRIC LEAST SQUARES ESTIMATORS IN NONLINEAR CENSORED REGRESSION MODELS

  • Choi, Seung-Hoe;Kim, Hae-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.703-712
    • /
    • 2003
  • This paper deals with the strong consistency of the asymmetric least squares for the nonlinear censored regression models which includes dependent variables cut off midway by any of external conditions, and provide the sufficient conditions which ensure the strong consistency of proposed estimators of the censored regression models. One example is given to illustrate the application of the main result.

The Strong Consistency of Regression Quantiles Estimators in Nonlinear Censored Regression Models

  • Choi, Seung-Hoe
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.1
    • /
    • pp.157-164
    • /
    • 2002
  • In this paper, we consider the strong consistency of the regression quantiles estimators for the nonlinear regression models when dependent variables are subject to censoring, and provide the sufficient conditions which ensure the strong consistency of proposed estimators of the censored regression models. one example is given to illustrate the application of the main result.

  • PDF

On the maximum likelihood estimation for a normal distribution under random censoring

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.647-658
    • /
    • 2018
  • In this paper, we study statistical inferences on the maximum likelihood estimation of a normal distribution when data are randomly censored. Likelihood equations are derived assuming that the censoring distribution does not involve any parameters of interest. The maximum likelihood estimators (MLEs) of the censored normal distribution do not have an explicit form, and it should be solved in an iterative way. We consider a simple method to derive an explicit form of the approximate MLEs with no iterations by expanding the nonlinear parts of the likelihood equations in Taylor series around some suitable points. The points are closely related to Kaplan-Meier estimators. By using the same method, the observed Fisher information is also approximated to obtain asymptotic variances of the estimators. An illustrative example is presented, and a simulation study is conducted to compare the performances of the estimators. In addition to their explicit form, the approximate MLEs are as efficient as the MLEs in terms of variances.

Review of statistical methods for survival analysis using genomic data

  • Lee, Seungyeoun;Lim, Heeju
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.41.1-41.12
    • /
    • 2019
  • Survival analysis mainly deals with the time to event, including death, onset of disease, and bankruptcy. The common characteristic of survival analysis is that it contains "censored" data, in which the time to event cannot be completely observed, but instead represents the lower bound of the time to event. Only the occurrence of either time to event or censoring time is observed. Many traditional statistical methods have been effectively used for analyzing survival data with censored observations. However, with the development of high-throughput technologies for producing "omics" data, more advanced statistical methods, such as regularization, should be required to construct the predictive survival model with high-dimensional genomic data. Furthermore, machine learning approaches have been adapted for survival analysis, to fit nonlinear and complex interaction effects between predictors, and achieve more accurate prediction of individual survival probability. Presently, since most clinicians and medical researchers can easily assess statistical programs for analyzing survival data, a review article is helpful for understanding statistical methods used in survival analysis. We review traditional survival methods and regularization methods, with various penalty functions, for the analysis of high-dimensional genomics, and describe machine learning techniques that have been adapted to survival analysis.

Mixed effects least squares support vector machine for survival data analysis (생존자료분석을 위한 혼합효과 최소제곱 서포트벡터기계)

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.739-748
    • /
    • 2012
  • In this paper we propose a mixed effects least squares support vector machine (LS-SVM) for the censored data which are observed from different groups. We use weights by which the randomly right censoring is taken into account in the nonlinear regression. The weights are formed with Kaplan-Meier estimates of censoring distribution. In the proposed model a random effects term representing inter-group variation is included. Furthermore generalized cross validation function is proposed for the selection of the optimal values of hyper-parameters. Experimental results are then presented which indicate the performance of the proposed LS-SVM by comparing with a standard LS-SVM for the censored data.

Drivers' Acceptable levels of the Accuracy of Travel Time Information and Their Valuations (통행시간 정보 정확도에 대한 운전자들의 허용수준과 화폐가치)

  • Yu, Jeong Whon;Choi, Seo Yoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.139-148
    • /
    • 2012
  • PURPOSES : The accuracy of travel time information is a key measure of effectiveness and reliability of advanced traveler information systems. This study aims at investigating drivers' perception on the acceptable level of information accuracy and their corresponding valuations. METHODS : A questionnaire survey was executed for collecting driver perception data to capture the expectation level of travel time information provided and their willingness to pay for the information. A Tobit model was adopted for exploring the relationship among the acceptable level, driver socioeconomic characteristics and travel attributes. Since drivers' willingness to pay for accurate travel time information can be different according to their travel lengths, a piecewise linear regression model was developed to capture the sensitivity of values of travel time information to travel length. RESULTS : The analysis results suggest that trip purpose and travel time are two dominant factors to determine drivers' acceptable level of travel time information. For business and short trips, drivers want more accurate information than for non-business and long trips. Drivers' willingness to pay for travel time information also varies depending on their incomes, trip purposes and travel lengths. The results also show that drivers' valuation of travel time information provided is sensitive to their travel length. For longer trips, drivers are less sensitive to travel time information and then put less value on the information provided. CONCLUSIONS : Censored nonlinear regression models are developed to estimate drivers' acceptable accuracy for travel time information and their valuation using questionnaire survey data. The findings on drivers perception to the required accuracy of travel time information and their corresponding willingness to pay can be used in the design and deployment of advanced traveler information system to improve its effectiveness and usefulness through high compliance.