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THE STRONG CONSISTENCY OF THE
ASYMMETRIC LEAST SQUARES ESTIMATORS IN
NONLINEAR CENSORED REGRESSION MODELS

SEUNG HOE CHol AND HAE KYUNG KM

ABSTRACT. This paper deals with the strong consistency of the
asymmetric least squares for the nonlinear censored regression mod-
els which includes dependent variables cut off midway by any of ex-
ternal conditions, and provide the sufficient conditions which ensure
the strong consistency of proposed estimators of the censored re-
gression models. One example is given to illustrate the application
of the main result.

1. Introduction

Censored observation may arise naturally in time series if there is an
upper or lower limit of detection. For example, in medicine the survival
time of a patient can not be observed due to the patient was alive at the
termination of the study, the patient withdrew alive during the study, or
the patient died of causes other than those under study. In accordance
with this, in case of the dependent variables are subject to censoring time
various statistical properties derived from ordinary regression model are
not available. Therefore, it is necessary that method to estimating and
testing for censored regression model be suggested.

We consider in this paper the following nonlinear censored regression
model

(1.1) y¢ = min{cy, f(z4,600) + €&}, t=1,2,---,m,
where z; € Q C R? denotes the t-th fixed input value, the true parameter
vector 8, = (61, ,0p) is an interior point of parameter space © C RP?, f

is a real valued function on R? x ©, random errors €; are independent
and identically distributed (i.i.d.) random variables with a finite second
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moment and the distribution function G(z) and y; is the t-th dependent
value which are censored from left at fixed censoring time c;. Assume
that the function f(z,6,) could be written in the form f(z,6,) = 8; +
f(x’ (02’ T 7017))'

Unlike the ordinary regression model, in censored regression model
we observe only the censored data (Z;, 6;, ;) with Z; = min{y, ¢}, d: =
Iiy, <c,] where ¢; is censoring time and [ is indicator function. Statistical
analysis under nonlinear censored regression model (1.1) involves esti-
mation of the parameter € and test of hypotheses about its components
by utilizing the data (Z;,d;,x¢). As the important estimation method
for censored regression model when the response function is linear, Pow-
ell [6] proposed regression quantiles estimators which provide a natural
generalization of the notion of sample quantiles to the general regression
model.

The Censored Regression Quantiles (CRQ) estimators, denoted by
6.(B), are defined as the value of # minimizing the following function

(12) Ra0:6) = =3 0p(y — minfee, f(z,6)))

t=1
where the “check function”

f >0

Bz
905(113)={ -1z if z<0

and 0 < # < 1. Especially, the Least Absolute Deviation (LAD) esti-
mators are easily seen to be a special case of the 9-th RQ estimators
when 8 = % Analysis of linear models using CRQ estimation has been
published by many authors ([2, 3, 4, 6, 7]).

Although RQ estimators is robust against outlier, it can be poor es-
timators in case of the distribution of the errors is similar to normal
distribution, or has less variance than standard normal distribution and
there is the difficulty of computing RQ estimation and the lack of ad-
equate sampling theory of such estimators because object function of
RQ estimation is not continuously differentiable. See Newey and Powell
[8] and Billas et al. [2]. To improve these problem, Newey and Powell
[8] consider replacing the “check function” of RQ estimators with the
following “loss function”

(z) = T2 if >0
pri%) = 1-7)z? if z<0,
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where 0 < 7 < 1. Thus, in order to make up for the weak point of CRQ
estimators there is need to suggest the new estimators based on the loss
function p,(z) in censored model (1.1).

The Censored Asymmetric Least Squares (CALS) estimators of the
true parameter 8, based on (Z;, &, x;), denoted by 8, (7), are a parameter
which minimizes the objective function

(1.3) Ln(8;7) = % S pr(y — min{es, £(z1,6)}).
t=1

Since the loss function p,(z) rotates the square function % by some

angle in the clockwise direction, the Least Squares (LS) estimators is an
obviously important special case of the ASL estimation. Efron [5] and
Newey and Powell [8] investigated asymptotic behavior of ALS estima-
tors in the in the ordinary linear regression model with i.i.d. random
errors. Amemiya [1] proved the asymptotic properties of the maximum
likelihood estimators for linear censored regression model.

The main purpose of this paper is to provide some simple sufficient
conditions for the strong consistency of the CALS estimators in nonlinear
regression model when dependent variables are subject to censoring time.
Also, one example is given to illustrate the application of the main result.

2. Strong consistency of CALS estimators

In this section, we present sufficient conditions for strong consistency
of the CALS estimators in model (1.1). To simplify the notations, we
denote

16) = £(20,0), V£.(6) = [(fni(e)} (i6) = 50,

{(px1)
2 o
V(0 = [(150)] | and (R)5(0) = g 0)
(po) 80189]
For the strong consistency of CALS estimators, we need the following
assumptions in censored regression model (1.1):

Assumption A

A : The parameter space © is a compact subspace of R? and Q is
compact subset of RY.

Ay : For all t, the partial derivatives V f;(9) and V2f,(8) exist and
V f1(8) are continuous on I' x ©.
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Now, in order to explain the relation between the 7 given in (1.3) and
the distribution function of G(z) we introduce the expectiles which are
determined by tail expectation. Newey and Powell [8] pointed out the
expectiles, denoted by u(7), summarize the distribution function in the
similar way that the quantiles n5 = G~1(8) and suggested the following
equation

T f“" — 1)dG(z)
1—7 f(T)( ( ))d (ac)

7) as the following

(2.1)

From (2.1) we get the relation between 7 and u

v/\

fﬂ( T) )dG(
" ["D(@ - u(r)dG(a > fu(,) (z ~ u(r))dG(z)
S 2 - u(T)PdG(x)
T Ele—u(n)]

Thus, in case of the density function of errors is symmetric about a we
know that the CALS estimators is the same of LS estimators by choosing
7 = 1 and p(7) = a. The next assumption gives the condition of the
density function of random errors.
Assumption B

By : The density function g(z) of random errors is continuous on R
and strictly positive at some finite real number «(7) which is depend on
T.

Meanwhile, to derive the another objective function of CALS estima-
tors let

(22) Sn(o, 7') = '71; Z p‘r(yt - min{ct, f(:rt’ 0) - /"’(T)})
t=1

Then, the value which minimizing (2.2) is equivalent to 8, (7)+ (u(7),0,
-, 0). The following theorem gives uniform convergence of the objective
function of CALS estimators

Qr(0:7)=8,(0:7)— Sp(8,: 7).

THEOREM 1. Suppose that Assumption A and B hold for the cen-
sored model (1.1). Then we have

Qn(0:7) — E[Qn(8: )] = 0p(1)

where op(1) stands for convergence in probability.
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PROOF. For the proof, let

Ay(7,0,65) = pr(ye—min{cy, £i(0)} (7)) —pr (y:—min{cs, f(60)}—1(7))-

Then, the convexity of the check function p,(x) implies that A:(r,8,6,)
is less than

2pr(min{ct, fi(6,)} — min{ct, f:(6)}) + pr(y: — min{et, f2(60)} — p(7)).

On the other hand, by simple calculation we obtain that

pr(min{ct, ft(6o)} — min{ct, f:(6)})

is equal to
pr(fe(8o) — f:(0)), on Q1 ={z € Q: fi(0) <, fi(0s) <t }
prles— £:(0),  onQy={z€Q:f,(8) < e < fi(6s) }
pr(fe(6o) — ct), on s ={ze€Q: fi(6,) <c: < fe(6)}
O, on Q4 = {x € ft(oo) > ctaft(e) > Ct}

So, from the above result we have
pr(min{e;, f¢(6,)} — min{cz, £:(0)}) < pr(fe(6o) — f2(6))
for t € Qy U Q3. Thus, for all t we get
pr(min{ey, f:(0,)} — min{e, £(8)}) < Tmax(fi(6o) — £:(6))?

where Tyax = max{7,1 7}
Also, Assumption A and application of Mean Value Theorem and
Hoélder’s inequality yield that there exist a finite My (7,6,6,) such that

pr(£e(80) — f1(8)) < Tmaxl|VF(R) |6 — boll < Mia(7,6,60)

where 6% = A0 + (1 — A)8,,0 < A <1 and | - || denotes Euclidean norm.
By similar method as before, we know

pr(ys — minfer, f1(60)} — u(r)) < (e — u(7))*.

While, since second moment of ¢; and u(7) are finite, there exist a finite
Mis(T,0,) such that

pr(ye — min{ct, f1(60)} — p(7)) < Mia(,65).
Thus, we get
A(1,0,6,) < 2My41(1,0,6,) + Mya(T,6,).
Moreover, Chebyshev’s inequality gives
max Var[A¢(T,0,60,)]

1<t<n

P(|Qn(8;7) — BQu(6;7)] > €] < o
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Since Var[A:(r,0,0,)] is finite due to Assumption A, the proof is com-
pleted. O

Let P, be a probability measure on R? and we add the following
assumptions to discuss the strong consistency of CALS estimators.

Assumption C

Cy: Pz[iL‘t €Q: ft(O) 7é ft(B,,)] >0if 0 #8,.

Cs : The ratio of the number of elements of the set U, (8,) = {t :
ft(6,) < ¢¢} to the number of the observations in model (1.1), denoted
by 3’—‘—(—22 , converges to u(6,),0 < u(f,) < 1.

C’3. The matrix V,(6,) = = Z VT £,(6,)V f:(8,) converges to a
teUn(o )
positive definite matrix V' (6,) as n — oo.

REMARK. In an actual experiment, it is an important point how
many of the value of dependent variables can be observed within the
censoring time. Since it can be u(6,) = 1 in case that the experiment is
observed or recorded in sufficient time, Assumption C3 is transformed
to a condition often referred in ordinary nonlinear regression model, and
the condition u(8,) = 0 which happen in case that the value of dependent
variables that is observable in a fixed time is extremely small may be
unsuitable to the regression model. Hence, as suggested in Assumption
C the ratio of the number of the dependent variables within censoring
time to the total number of observation should maintain a fixed ratio.

The next result deals with the strong consistency of CALS estimators.

THEOREM 2. For the nonlinear censored regression model (1.1), sup-
pose Athat Assumption A, B and C are fulfilled. Then the CALS estima-
tors 0, (7) is strongly consistent for 6,(r), denoted by

én(T) = 0o(T)
where 0,(7) = (61 — pu(7),02,- -+ ,0p).
ProOOF. To prove the theorem it suffices to show that

lim  inf n(0;7)} > 0 a.e.
n—00 ||§—fof|> 5{Q 67}

for any § > 0.
First, Theorem 1 implies that

Qn(0:7) ZEAtTOG)]—}—op(l).
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Let

Bn(6:7) ZEAtT,OG)]

t 1

Since A(7,6,86,) is independent of 8 in case of ¢; > fi(6), we have that

VBu6:7) =1 S iy~ ful6) - w(r)) V5ul6)

teUn(0)

and

VBa(0:1) = Y [orlue ~ ul6) ~ WD) VO £(6)

teUrn(9)
— po(ye = f2(60) — p(r))V2£(8)]

where p.(x) and p, (z) denotes first and second derivative of p,(z), re-
spectively.
Note that in case of ¢t belong to U, (6,) we get

ye = fi(0o) +

where 7t = €tl[p, <a,(9,)] and @t(0o) = ¢t — ft(6o)-
Define h:(x) by

e = { P oma © <)
0, xz > at(OO).

Then, Hy(k) = f_ ht(A)dA is the distribution function of 7;. Moreover,
by means of the relation of 7 and p(7) and Chebyshev’s inequality we
obtain VB, (6, : 7) = 0 and V2B, (0, : 7) is greater than

at(oo)
M Tenin min/ Z F1(86) V7 £2(6,)
m

1<t<
Sten (T) tEUn(oo)

where Tpin = min{1—7, 7}. Hence, since the Hessan matrix V2B, (6, : T)
is positive definite for sufficiently large n, Bp(6 : 7) attains a local
minimum at 6,.

Suppose that there exist 87 (7) in {6 : ||@ — 6,|| > 6} N O such that
Bn(05,(1) : 7) < Bp(6, : ) for sufficiently large n. If di(0) = fi(0) —
ft(6o) > 0, by some tedious algebra the expectation of A:(7,6,6,) is
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greater than

Fu(r:8), ifteQ,a(6,) > p(r)
Fo(r:0), ifte,a(b,) < p(r)
Fys(r:9), ifteQs,a(60) > p(r)
Ft4(7' : 0), ifte Q4,dt(90) < /,L(T)
g, if t € Qs
where
w(r)+d:(6)
Fa(r:0)= 7 [ (B =N (o) = 240G
u(r

r / T 2d(0)(A — ae(0,))dCH(N),
a(0,)

a¢(6o)
Fin(r : 0) = 24,(0){(1 — 7) / (u(r) = 3)

+7 / () — a8 HG),

—at(Go)
() +a(6)
Fatrs )= [ (0 ) 2e8) = A (G
H T
+ 72a,(6,) / T = al0,))dG (),
at(90)

and

02(00)
Fua(r : 8) = 2(1 — 7)ay(8o){ / (u(r) = )

+ [ (ulr) - a0},

+(8o)
All of integrals in this expression are strictly positive by Assumption B.
So, we can choose a positive constant 7 (7 : 6) such that

Fy(r:6) > n(r: 6)

for each 7. Likewise if d¢(f) < 0, we have a similar result. Thus, the
proceeding results show that

B0y (1) :7) > lrzignm(r 00 (T))we(T),
where n(7: 0) = 112_121477“(7 :0) and wi(7) = Prlze € T : f2(0) # f1(60)]-

Hence this is a contradiction the fact S, (6;(7) : 7) < Sp(6, : 7) for
sufficiently large n. The proof is thus complete. |
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To illustrate the application of the main result we consider with the
following example.

ExAMPLE 1. Let p(z) be a differential function from R? to R* and
k be fixed real number. Consider the response function

£+(6) = 61 + Oap(x4)?

Assume that input variable z; chose as random sample from some dis-
tribution with the distribution function H(z) and the true parameter
6, = (01,602, 03) belong to © = [0,a;1] x {k} x [0, ag], where a; and a3 are
finite real number Then, by simple calculation we obtain

Val0o) = = 3 VAV (00)

teUn(e)
teffe) 2 k() Inp(z)
teUn(8,)
2
Y kplzy)®Inp(z) L Y (kp(z:)% Inp(zy))
teUL(0) teUn(6,)

Also, Assumption C implies that V,(6,) converges to

[ dH(z) [ kp(z)® Inp(z) dH (z)
[ / kp(z)% Inp(z) dH () i (kp(:):)03 lnp(m))2 dH(z). }
Moreover, for non-zero vector o = (a1, az) # (0,0) we have

aV(8)aT = u(6,) / (o1 + a2kp(a) Inp(z) ) dH(z) > 0.

Hence, under some conditions we can obtain the strong consistency of
CALS estimators. O

u(6,)

Let k be fixed real number and a; and a3 be finite real number.
Consider the response function

ft(e) =01 + 921‘?3,33,: > 0.
Then, note that

Va(0o) = Z V f:(6,)V £ (80)
teUn(oo)
tn 0o LY kallnp(a)
teUn(8s)

Z ka:t3lnact % Z (k-’l?gslnmt)2

teU (8.) t€Un(85)
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Also, Assumption C implies that V;,(,) converges to
u(6,) [ dH(z) [ ks lnp(a:z) dH (z)
| [k InzdH(z) [ (k2% Inz)” dH(z) |

Moreover, for non-zero vector o = (ay,a2) # (0,0) we have

aV()al = u(@o)/ (a1 + ankp(x)? lnp(x))2 dH(z) > 0.

Hence, under some conditions we can obtain the strong consistency of
CALS estimators. O
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