• Title/Summary/Keyword: Cenosphere

Search Result 16, Processing Time 0.03 seconds

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Analysis of Coal Fly Ash (석탄회의 분석)

  • 이효진;김동원;이기강;김유택;홍성창;이시진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.185-201
    • /
    • 1993
  • The objectives of this study are to identify the physical, chemical and microstructural properties of coal fly ash and to increase the industrial use of coal fly ash. Experimental results show that 3 major constituents of coal fly ash are $SiO_2$, $Al_2O_3$ and coal fly ash includes the crystalline of Quartz and Mullite. Coal fly ash are classified into 7 groups based on the type of microstructure. Cenosphere is divided into floater and dry separated cenosphere which are consist mainly of $SiO_2$ and $Al_2O_3$. Cenosphere segregations are formed by adsorption and neck growth of the smaller sized cenosphere particles on the condition of the high temperature and air pressure.

  • PDF

The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere (세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Hwnag, Kwang-Taek;Cho, Woo-Suk;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.353-358
    • /
    • 2017
  • Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite

  • Pandey, Harsh Kumar;Agrawal, Himanshu;Panda, Subrata Kumar;Hirwani, Chetan Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.715-724
    • /
    • 2020
  • The influence on flexural strength of Glass/Epoxy laminated composite curved panels of different geometries (cylindrical, spherical, elliptical, hyperboloid and flat) due to inclusion of nano cenosphere filler examined in this research article. The deflection responses of the hybrid structure are evaluated numerically using the isoparametric finite element technique and modelled mathematically via higher-order displacement structural kinematics. To predict the deflection values, a customised in-house computer code in MATLAB environment is prepared using the higher-order isoparametric formulation. Subsequently, the numerical model validity has been established by comparing with those of available benchmark solution including the convergence characteristics of the finite element solution. Further, a few cenosphere filled hybrid composite are prepared for different volume fractions for the experimental purpose, to review the propose model accuracy. The experimental deflection values are compared with the finite element solutions, where the experimental elastic properties are adopted for the computation. Finally, the effect of different variable design dependent parameter and the percentages of nano cenosphere including the geometrical shapes obtained via a set of numerical experimentation.

Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification

  • Pandey, Harsh Kumar;Hirwani, Chetan Kumar;Sharma, Nitin;Katariya, Pankaj V.;Dewangan, Hukum Chand;Panda, Subrata Kumar
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.419-429
    • /
    • 2019
  • The effect of an increasing percentage of nanofiller (glass cenosphere) with Glass/Epoxy hybrid composite curved panels modeled mathematically using the multiscale concept and subsequent numerical eigenvalues of different geometrical configurations (cylindrical, spherical, elliptical, hyperboloid and flat) predicted in this research article. The numerical model of Glass/Epoxy/Cenosphere is derived using the higher-order polynomial type of kinematic theory in association with isoparametric finite element technique. The multiscale mathematical model utilized for the customized computer code for the evaluation of the frequency data. The numerical model validation and consistency verified with experimental frequency data and convergence test including the experimental elastic properties. The experimental frequencies of the multiscale nano filler-reinforced composite are recorded through the impact hammer frequency test rig including CDAQ-9178 (National Instruments) and LABVIEW virtual programming. Finally, the nano cenosphere filler percentage and different design associated geometrical parameters on the natural frequency data of hybrid composite structural configurations are illustrated through a series of numerical examples.

Effect of Additive Ball Clay on Physical Properties of Porous Ceramic (볼 클레이 첨가에 따른 세라믹 다공체의 물리적 특성변화)

  • Kang, Young-Sung;Kim, Sang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.109-112
    • /
    • 2014
  • A porous ceramic which has fine porosity and small specific gravity is made with Cenosphere and Ball Clay under condition of $1,250^{\circ}C$ in calcination temperature and 30 minutes of calcination time. The average size of porous ceramic was about $2.5{\times}10^{-5}$ m and pores are well developed. The void-fraction of porous ceramic was 67.1% under the input of Cenosphere and Ball clay with the weight ratio of 100 to 5. However, as weight ratio of Ball Clay increased to 20, 40, 100, the void fraction decreased to 58.4, 56.7, 47% respectively. When the weight ratio of Cenosphere and Ball Clay was 100 to 100, the apparent density of porous ceramic was $1.04g/cm^3$. which is twice the density when the weight ratio of Ball Clay was 5. On the other hand, absorption rate decreased by at least 100%. In condition of weight ratio of Cenosphere and Ball Clay was 100 to 100, compressive strength of porous ceramic was 30 (MPa), improve by about 76% or more when the weight ratio of Ball Clay was 5.

The treatment of coal fly ash for the recycling as ceramic raw materials : I. The effect of calcination and elutriation (요업원료로 재활용하기 위한 석탄회의 처리 : I. 하소 및 수비의 영향)

  • 김유택;이준호;정철원;허화범;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.414-422
    • /
    • 1995
  • Coal fly ash was calcined and elutriated for recycling as ceramic raw materials. C Crystal phases, morphologies, chemical components, particle size distributions and Ig. loss of as-received, calcined and elutriated coal fly ash were investigated to study the effects of the calci nation and elutriation on the coal fly ash classification. The experimental equations, which were used in elutriation of clay, were examined in order to find out which equation is appropriated for coal fly ash classification. It turned out that Rittinger's equation is relatively well matched for the fly ash. Having nothing to do with the treatment conditions, the crystal phases of coal f fly ash were mullite, quartz. Calcite peak was detected in as - received and elutriated coal fly a ash; however, it disappeared in calcined coal fly ash. As - received coal fly ash consists of various type of particles such as a cenosphere, coke type, silicate type, whisker type and aggregat e ed type. In case of calcined coal fly ash, coke type particles were eliminated and agglomerated type particles were relatively increased. Most of the particles that were relatively spherical cenosphere in the 4th step of elutriator. Particle size distribution was narrowed by calcination a and elutriation. Especially, in elutriation, particle size distribution was very narrow.

  • PDF

Optimization of Wear Behavior on Cenosphere -Aluminium Composite

  • Saravanan, V.;Thyla, P.R.;Balakrishnan, S.R.
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.322-329
    • /
    • 2015
  • The magnitude of wear should be at a minimum for numerous automobile and aeronautical components. In the current work, composites were prepared by varying the cenosphere content using the conventional stir casting method. A uniform distribution of particles was ensured with the help of scanning electron microscopy (SEM). Three major parameters were chosen from various factors that affect the wear. A wear test was conducted with a pin-on-disc apparatus; the controlling parameters were volume percentages of reinforcement of 5, 10, 15, and 20%, applied loads of 9.8, 29.42, and 49.03 N, and sliding speeds of 1.26, 2.51, and 3.77 m/s. The design of the experiments (DOE) was performed by varying the different influencing parameters using the full factorial method. An analysis of variance (ANOVA) was used to analyze the effects of the parameters on the wear rate. Using regression analysis, a response curve was obtained based on the experimental results. The parameters in the resulting curve were optimized using the Genetic Algorithm (GA). The GA results were compared with those of an alternate efficient algorithm called Neural Networks (NNs).

Reduction of unburned carbon derived from coal-fired power plant by changing operating conditions (운전조건병경에 의한 미분탄화력의 미연분 저감)

  • Park, Ho-Young;Kim, Young-Ju;Yu, Guen-Sil;Kim, Chun-Kun;Kim, Dong-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.299-303
    • /
    • 2006
  • From the analysis of fly ash, which contains unburned carbon, collected from the coal-fired Yong Hung power station, most particles are turned out to be hollow cenosphere and agglomerated soot particles. The sooting potential from six coals used in the plant were investigated with CPD model. The results show that the higher potential presented to Peabody, Arthur, Shenhua coals rather than other coals. It is necessary to measure the coal flow rates at each coal feeding pipe for four burner levels since they affect the extent of mixing of soot with oxidant, in turn, the oxidation rate of soot particles. The unbalance in coal flow rate was found in several coal pipes. We successfully reduced unburned carbon in ash by increasing the excess air and changing the SOFA yaw angle.

  • PDF