• Title/Summary/Keyword: Cement mortars

Search Result 279, Processing Time 0.024 seconds

Durability Characteristics of Blended Cement Mortars (혼합 시멘트 모르타르의 내구특성)

  • 원종필;이찬민;박찬기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.41-49
    • /
    • 2003
  • In this study, durability performance of blended cement mortars is evaluated when various mineral admixtures are used with the cement. A comprehensive evaluation of the effects of mineral admixtures on the mortar performance was made. The properties of fresh and hardened blended mortars investigated include slump flow and compressive strength. The durability characteristics of cement materials incorporating the mineral admixtures under various physical and chemical causes of deterioration was investigated. The laboratory test results indicate that mechanical and durability properties of blended cement mortars have superior performance rather than ordinary cement mortars.

Properties of Polymer Cement Mortars under Combined Cures (복합양생에 의한 폴리머 시멘트 모르타르의 성질)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.667-675
    • /
    • 2006
  • Concrete is much more easily damaged by various parameters than by the only one and performance reducing mechanism grows more complicated in that condition. In addition, the factors which really act in concrete structure tend to be activated in turn and the degradation of concrete is very rapidly progressed. The purpose of this study is to evaluate the properties of polymer cement mortars under combined cures. The polymer cement mortars are prepared with various polymer types, polymer-cement ratios and cement-fine aggregate ratio, and tested for compressive and flexural strengths, accelerated carbonation, chloride ion penetration and acid resistance test, and freezing-thawing test. The properties of polymer cement mortars under combined cures is discussed. From the test results, polymer cement mortars have superior strengths compared with plain cement mortar under combined cures. The strengths of polymer cement mortars are markedly increased at curing condition II and V, however strengths are not improved at curing condition I and IV irregardless of polymer types. The carbonation and chloride ion penetration depths of polymer cement mortars tend to decrease in curing conditions, III-C, IV-B, V-A order, and decrease with increasing polymer cement ratios. It is concluded that polymer cement ratio of 10 to 15% are considered optimum for the preparation of such polymer cement mortars.

The Strength and Durability of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 강도와 내구성)

  • Hwang, Eui-Hwan;Hwang, Taek-Bung;Ohama, Yoshihiko
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.786-794
    • /
    • 1994
  • The strength and durability of polymer-cement mortars were investigated. The specimens of polymer-cement mortar were prepared by using styrene-butadiene rubber(SBR) latex, ethylene-vinyl acetate(EVA) emulsion and polyacrylic ester(PAE) emulsion with various polymer-cement ratios(5, 10, 15, 20wt%). For the evaluation of durability of polymer-cement mortars, freezing-thawing, acid resistance and heat resistance tests were conducted. With an increase of polymer-cement ratio, the frost resistance of polymer-cement mortars was greatly improved, but acid and heat resistance were deteriorated. The compressive and flexural strengths of SBR polymer-cement mortars were improved with an increase of polymer-cement ratio, whereas those of EVA and PAE polymer-cement mortars reached maximum value at polymer-cement ratio of 10wt%.

  • PDF

The Relationship between Microstructure and Freezing Thawing Resistance of Polymer-Cement Mortars (폴리머-시멘트 모르타르의 미세구조 동결융합 저항성의 관계)

  • ;;田英治(Eiji Kamada)
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.949-956
    • /
    • 1994
  • In order to investigate the relationship between pore size distribution and freezing-thawing resistance of mortars, polymer-cement mortars were prepared by using styrene-butadiene rubber latex, ethylene-vinyl acetate emulsion and polyacrylic ester emulsion with various polymer-cement ratios at constant flow. From the results of the test, polymer-cement mortars had a good pore size distribution for freezing-thawing resistance compared with unmodified mortars because of having a small pore volume in the pore radius range of 103~104 $\AA$ affecting on the frost damage. And the freezing-thawing resistance of polymer-cement mortars was improved with increasing polymer-cement ratio.

  • PDF

Predicting the compressive strength of cement mortars containing FA and SF by MLPNN

  • Kocak, Yilmaz;Gulbandilar, Eyyup;Akcay, Muammer
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.759-770
    • /
    • 2015
  • In this study, a multi-layer perceptron neural network (MLPNN) prediction model for compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an output parameter which is compressive strength of cement mortars. In the model, the training and testing results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 90 days compressive strength of cement mortars.

Resistance Estimates of Cement Mortars Using Crushed Sand Under Chemical Attacks (화학적 침해를 받는 부순모래를 사용한 시멘트 모르타르의 저항성 평가에 관한 연구)

  • Kim, Myung-Sik;Jang, Hui-Suk;Beak, Dong-Il;Bang, Kwang-Won;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.577-580
    • /
    • 2006
  • As this study is to estimate resistance of cement mortars using crushed sand under chemical attacks. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of silica fume and fly ash(up to 15% and 50% by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days, 60days, 90days and 180days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of silica fume and fly ash was performed.

  • PDF

Chemical Attack Resistance Characteristics of Cement Mortars U sing in Crushed Sand (부순모래를 사용한 시멘트 모르타르의 화학적 침해 저항 특성)

  • Kim Kang Min;Baek Dong Il;Kim Myung Sik;Jang Hui Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.519-522
    • /
    • 2005
  • As this study is to test effects of chemical attack on deterioration of cement mortars using in crushed sand. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of slica fume and fly ash(up to $15\%$ and $50\%$ by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of slica fume and fly ash was performed.

  • PDF

Sulfate Attack Resistance of Crushed Sand Cement Mortars Containing Mineral Admixture (광물질 혼화재료를 혼입한 부순모래 시멘트 모르터의 황산염 침해 저항성)

  • Kim, Myung-Sik;Jang, Hui-Suk;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.821-824
    • /
    • 2006
  • As this study is to estimate long term resistance of cement mortars using crushed sand under chemical attacks. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of silica fume and fly ash(up to 15% and 50% by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days, 90days, 180days, 365days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of silica fume and fly ash was performed.

  • PDF

Properties of Polymer-Modified Cement Mortars Using Methylmethacrylate - Butyl Acrylate Latexes (MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • 형원길;송해룡;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.123-128
    • /
    • 2001
  • The Purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effect of the monomer ratio on the typical properties of polymer-modified mortars with methyl methacrylate-butyl acrylate latexes. The polymer latex-modified mortars are prepared with 5, 10, IS and 20% of polymer cement ratio respectively, and properties of modified mortars such as water absorption, compressive and flexural strengths, chloride-ion penetration depth are tested. The test results indicate that the monomer ratio is very important factors to characterize the strength properties of polymer-modified mortars, but the water absorption and chloride-ion penetration depth are influenced by polymer-cement ratio rather than monomer ratios.

  • PDF

Fundamental Propeties of Premix Type Polymer Cement Mortar (프리믹스 타입 폴리머 시멘트 모르터의 기초적 성질)

  • 연규석;주명기;최동순;김기락;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.641-646
    • /
    • 1997
  • Polymer cement mortar which is used as material for aging concrete structures is generally mixed manually and applied on the job site. but, to secure the required quality of the mortar, pre-mixed polymer cement mortar is favored. This study was initiated to four different pre-mixed polymer cement mortars which are produced in Korea. The for pre-mixed mortars were selected and tested with respect to physical and mechanical properties an proved that their qualities were better than those of common cement concrete mortars.

  • PDF