• Title/Summary/Keyword: Cement contents

Search Result 496, Processing Time 0.031 seconds

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF

MINERAL TRIOXIDE AGGREGATE AND ITS SUBSTITUTES (Mineral trioxide aggregate와 그 대체재료)

  • Cho, Yong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.149-151
    • /
    • 2010
  • Since its introduction in 1993, Mineral Trioxide Aggregate (MTA) has been shown to be superior to others in sealing, biocompatibility, and many other aspects of clinical endodontics. MTA is primarily Portland cement with bismuth oxide as a radiopacitifier. Although some studies suggested that the reasonable-priced Portland cement could be used instead of MTA, but MTAs are different from Portland cement in its composition, especially in heavy metal contents. Therefore, clinicians should be meticulous adapting the Portland cement as a MTA substitute.

Effect of Slag Grade and Cement Source on the Properties of Concrete

  • Becknell, Natalie Peterson;Hale, William Micah
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • Presented in the paper are findings of a project that examined the effect of slag grade and cement source on the performance of concrete mixtures. Slag cement contents were 20, 40, and 60 percent of the total cementitious material content. Two grades of slag cement were examined (Gr. 100 and Gr. 120) along with two sources of Type I cement. Compressive strength, durability, and permeability were measured. The results showed that the cement source affected the early age strength of the mixtures. At 28 days of age, mixtures containing Gr. 120 slag cement had higher compressive strengths than mixtures containing Gr. 100 slag cement, but by 90 days of age, the trend reversed. As for the chloride ion penetrability, mixtures cast with Gr. 100 slag cement passed fewer coulombs at 28 and 90 days of age than similar mixtures containing Gr. 120 slag. Mixtures containing Gr. 120 slag had the greatest durability factors.

Freeze and MechanicalProperties of Cement Mortar Using Coolant Wasted (폐부동액을 이용한 시멘트 모르터의 동결 및 역학적 특성)

  • Kim, Sang-Woo;Hong, Sang-Hee;Kim, Gi-Cheol;Ryu, Hyun-Ki;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.169-172
    • /
    • 2000
  • In this paper applicabilities of coolant wastes are an admixture, which are produced from cooling line of the cars and industrial engines, to concrete under cold climate are investigated. According to the test results, as the contents f coolant wastes increase, setting time of cement mortar is shown to be delayed. However, when coolants wastes are overadded, it appears to be fast. In case of compressive strength, It tends to decline as the contents of coolant waste increase. Under low curing temperature, compressive strength of cement mortar containing coolant wasted with the increase of the contents of coolants wastes.

  • PDF

The Effects of Starch as a Retarder in Soil Cement Mixtures (지연제로서 전분이 시멘트혼합토에 미치는 영향)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.3
    • /
    • pp.4163-4170
    • /
    • 1976
  • This study was conducted to investigate the effect of starch as a retarder on the maximum dry density and the unconfined compressive strength of soil cement mixtures for varied starch contents (0-3%), cement contents (3-12%), and delay times (0-6hrs) in four soils. The experimental results obtained from maximum dry density and unconfined compressive strength tests are as follows: 1. Maximum dry density and unconfined compressive strength were increased greatly in soil cement mixtues rwhen starch was added as retarder but their value schanged according to soil varieties. 2. Maximum dry density showed at about 0.5 percent to 1.0 percent of starch in KY soil and about 2.0 percent to 2.5 percent in SS soil when delay time was changed in 2.4, and 6 hours in compaction test. 3. The larger content of cement was, the bigger effects of maximum dry density and compressive strength were in soil cement. mixtures. 4. As delay time changed 2.4, and 6 hours in compaction test, 7-day unconfined compressive strength showed the biggest value at about 0.5 percent of starch in KY soil and 2.0 percent in SS soil, and the maximum value of 28-day unconfined compressive strength showed at about 0.5 percent in KY soil and 1.5 percent in SS soil.

  • PDF

Effect of tire crumb and cement addition on triaxial shear behavior of sandy soils

  • Karabash, Zuheir;Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • This paper presents a series of conventional undrained triaxial compression tests conducted to determine the effect of both tire crumbs and cement addition on Narli sand specimens. The tire crumb contents and cement contents were 3%, 7%, 15%; and 1%, 3%, 5% by dry weight of the sand specimens respectively. Specimens were prepared at about 35% relative density, cured during overnight (about 17 hours) for artificially bonding under a 100 kPa effective stress (confining pressure of 500 kPa with a back pressure of 400 kPa), and then sheared. Deviatoric stress-axial strain, pore water pressure-axial strain behavior, and Young's modulus of the specimens at various mixture ratios of tire crumb/cement/sand were measured. Test results indicated that the addition of tire crumb to sand decreases Young's modulus, deviatoric stress and brittleness, and increase pore water pressure generation. The addition of cement to sand with tire crumbs increases deviatoric stress, Young's modulus, and changes its ductile behavior to a more brittle one. The results suggest that specimen formation in the way used here could reduce the tire disposal problem in not only economically, and environmentally, but also more effectively beneficial way for some geotechnical applications.

The Experiment Study on Chloride Binding of Cement Paste According to The Al/Ca+Si Ratio (Al/Ca+Si 비에 따른 시멘트 페이스트의 염화물 고정에 관한 실험적 연구)

  • Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.51-52
    • /
    • 2016
  • This paper researches the Chloride Binding of Cement Paste according to the Ca/Si and Ca/Al Ratio. The mechanisms of chloride ion binding are not completely known, although it is believed that Alumina contents in cementitious system have an important role. For changing cement paste composition, Ordinary Portland Cement(OPC) paste is substituted by Granulated Ground Blast Slag(GGBS). With increasing the ratio of GGBS substitution(Thus alumina contents is increasing), The chloride binding capacity has a tendency to increase of binding chloride ion capacity.

  • PDF

Drying Shrinkage Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 건조수축특성)

  • Yun, Kyong-Ku;Hong, Chang-Woo;Lee, Joo-Hyung
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.301-306
    • /
    • 2001
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%), W-C ratios, and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. Test results revealed that the drying shrinkage of latex modified concrete(LMC), rapid-setting cement latex modified concrete(RSLMC) was considerably lower than that of ordinary portland cement concrete(OPC), rapid-setting cement concrete(RSC), respectively. This may be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic and colloidal properties of the latexes, resulting in reduced water evaporation.

  • PDF

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

Properties of Blended Cement Using Ground Blastfurnace Slag with Low Blain Value (저 분말도 고로슬래그 분말을 사용한 혼합시멘트의 물성)

  • 송종택;김재영;최현국;변승호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.70-76
    • /
    • 2000
  • In order to investigate the properties of the blended cement using coarsely ground blasturnace slag blended coements which were substituted from 10 to 70 wt% low Blaine slag powder (2,000 and 3,000 cm2/g) for porland cement clinker were prepared and Cal(OH)2 contents in hydrates hydration heat the fluidity and the compressive strength were measured. As the content of slag was increased the hydration heat and the early strength was decreased and the fluidity of the cement paste was improved. The heat evolution of the cement with 2,000cm2/g slag was lower than that of 3,000 cm2/g slag blended cement. Especially the heat evolution of 60wt% or above slag blended cement was similar to that of belite rich cement.

  • PDF