• 제목/요약/키워드: Cement Mortar

검색결과 1,459건 처리시간 0.031초

규불화수소산 처리 시멘트 슬러지를 사용한 모르타르의 물성 및 방수 특성 (Physical and Waterproof Properties of Mortar Using Cement Sludge Treated with Hydrofluosilicic Acid)

  • 김승문;이병기;김도수;노재성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.76-81
    • /
    • 1998
  • The physical properties of cement sludge treated with hydrofluosilicic acid were investigated. The compressive strength of cement mortar substituted cement sludge was decreased than that of OPC(ordinary portland cement) mortar. Cement sludge, for improving its physical properties, was treated with hydrofluosilicic acid. And compressive strength of cement mortar substituted TCS was greatly improved than that of OPC mortar. Particularly, cement mortar substituted TCS had the higher value in water-proofness than of OPC.

  • PDF

가공된 석탄재를 사용한 석탄재혼합시멘트의 모르터 특성 (The Mortar Properties of Portland Cements Blended with Modified Coal Ashes)

  • 홍원표;노재성;조헌영;정수영;김무한
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.833-840
    • /
    • 1990
  • For the development of multi-functional materials which has water reducing power, air entraining power and waterproofing power as well as blending additive in cement mortar the coal ash was modified with asphalt-stearic acid or asphalt-boiled oil mixtures by mechanical treatment. And the physical properties of cement mortar blended with modified coal ashes were compared with those of the water-tightness-cement mortar and the ordinary-portland-cement mortar added with AE.water reducing agent. The mortar of coalash-blend-cement modified with asphalt-stearic mixture was increased acid about 20% in initial strengths and decreased about 20% in water absorption ratio than those of ordinary coalash-blend-cement. The mortar of coalash-blend-cement modified with asphalt-bolied oil mixture was similar to the cement mortar added with AE.water reducing agent in water reduction ratio, air entraining conents and the initial strengths, also was similar to the water-tightness-cement mortar in water absorption and water permeability ratios.

  • PDF

이종접합 나노 광촉매를 이용한 시멘트 모르타르의 물성 평가 (Properties of Cement Mortar with Nano-heterojunction Photocatalysts)

  • 이준철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2022
  • The properties of cement mortar with nano-heterojunction photocatalysts were investigated in this study. The following tests were conducted with the cement mortar : (1) Flow test of fresh cement mortar, (2) compressive strength and (3) acetaldehyde removal efficiency under visible light. Results indicated that the cement mortar with nano-heterojunction photocatalysts showed higher compressive strength and higher acetaldehyde removal efficiency as the mixing ratio of nano-heterojunction increased.

  • PDF

Additives의 혼합에 의한 Tile Cement Mortar 물성향상 연구 (Study on Improving Properties of Tile Cement Mortar by Mixing of Additives)

  • 이무진;신영조
    • 공업화학
    • /
    • 제10권3호
    • /
    • pp.486-490
    • /
    • 1999
  • 타일을 부착시키는 tile 전용 cement mortar가 갖추어야 하는 물성인 우수한 보수성, 작업성, open time, 처짐저항성과 타임접착강도 등을 향상시키기 위해 본 연구에서는 mortar에 첨가하는 혼화제들의 홉합비율을 달리하였을 때 나타나는 특성을 비교 분석하였다. Mortar의 보수성 효과를 주는 hydroxypropylmethylcellulose에 소량의 합성 starch을 첨가해 줌으로써 mortar는 보수성을 유지하면서 겉마름이 적게되었고, open time이 길어져 작업성이 향상되었다. 타일의 접착강도를 높이기 위해 polyacrylamide와 ethylenevinyl acetate을 첨가하여 mortar 자체 및 타일의 처짐을 줄였고, 바탕면과 타일과의 mortar 접착력을 증대시켰다. 이와 함께 melment의 첨가로 mortar에 유동성을 주어 작업성을 향상시켰다. 이들 첨가제의 필요량은 cement량에 대해 hydroxypropyl methylcellulose는 0.80~1.20%, starch 0.10~0.15%, polyacrylamide 0.001~0.015%, ethylenevinyl acetate 0.05~0.10% 및 melment 0.003~0.005%의 혼합비율일 때 tile cement mortar의 물성이 향상됨을 알 수 있었다.

  • PDF

화학약품용액에 침지한 시멘트모르터의 물성변화 (Properties of Cement Mortar Immersed in Chemical Solution)

  • 문한영;김진철;김홍삼;유정훈;이승태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.407-410
    • /
    • 1999
  • The 5 types of cement mortar was immersed in the various chemical solutions for 400 days and then the compressive strength and the length change were measured to consider the chemical resistance at required ages. Due to the effect of flyashe and GGBF slag, the compressive strength of blended cement mortar was higher than that of portland cement mortar at long ages. According to the result of length change, the mineral admixture in blended cement had an indluence on reducing the amount of C3A, the cause of making concrete expand, and it made the formation of cements mortar denser so that the length change was much smaller than that of the portland cement mortar. However, the OPC mortar immersed in Na2SO4 solution for 180 days shows 4 times bigger length change chante than the blended cement mortar.

  • PDF

Mechanical Properties of Cement Mortar: Development of Structure-Property Relationships

  • Ghebrab, Tewodros Tekeste;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2011
  • Theoretical models for prediction of the mechanical properties of cement mortar are developed based on the morphology and interactions of cement hydration products, capillary pores and microcracks. The models account for intermolecular interactions involving the nano-scale calcium silicate hydrate (C-S-H) constituents of hydration products, and consider the effects of capillary pores as well as the microcracks within the hydrated cement paste and at the interfacial transition zone (ITZ). Cement mortar was modeled as a three-phase material composed of hydrated cement paste, fine aggregates and ITZ. The Hashin's bound model was used to predict the elastic modulus of mortar as a three-phase composite. Theoretical evaluation of fracture toughness indicated that the frictional pullout of fine aggregates makes major contribution to the fracture energy of cement mortar. Linear fracture mechanics principles were used to model the tensile strength of mortar. The predictions of theoretical models compared reasonably with empirical values.

Tritium radioactivity estimation in cement mortar by heat-extraction and liquid scintillation counting

  • Kang, Ki Joon;Bae, Jun Woo;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3798-3807
    • /
    • 2021
  • Tritium extraction from radioactively contaminated cement mortar samples was performed using heating and liquid scintillation counting methods. Tritiated water molecules (HTO) can be present in contaminated water along with water molecules (H2O). Water is one of the primary constituents of cement mortar dough. Therefore, if tritium is present in cement mortar, the buildings and structures using this cement mortar would be contaminated by tritium. The radioactivity level of the materials in the environment exposed to tritium contamination should be determined for their disposal in accordance with the criteria of low-level radioactive waste disposal facility. For our experiments, the cement mortar samples were heated at different temperature conditions using a high-temperature combustion furnace, and the extracted tritium was collected into a 0.1 M nitric acid solution, which was then mixed with a liquid scintillator to be analyzed in a liquid scintillation counter (LSC). The tritium extraction rate from the cement mortar sample was calculated to be 90.91% and 98.54% corresponding to 9 h of heating at temperatures of 200 ℃ and 400 ℃, respectively. The tritium extraction rate was close to 100% at 400 ℃, although the bulk of cement mortar sample was contaminated by tritium.

망간 도핑 이산화티탄 나노와이어를 혼입한 시멘트 모르타르의 특성 (Properties of Cement Mortar with Manganese Doped Titanium Dioxide Nano-Wires)

  • 이준철;호우야오롱
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.323-324
    • /
    • 2023
  • The properties of cement mortar mixed with manganese-doped titanium dioxide nanowires (TiO2(Mn)-NWs) were investigated in this study. The TiO2(Mn)-NWs were synthesized using solvo-thermal synthesis and electro-spinning techniques. The TiO2(Mn)-NWs at weights of 1%, 2%, and 3% of the cement were respectively mixed into the cement mortar. The results showed that as the amount of TiO2(Mn)-NWs increased, the flow value of the cement mortar was decreased and the setting time of cement mortar was accelerated. Moreover, as the amount of TiO2(Mn)-NWs increased, the compressive strength of cement mortar was increased and the efficiency of acetaldehyde removal was improved.

  • PDF

무기안료가 시멘트모르타르의 압축강도와 흡수율에 미치는 영향 (The Influence of Inorganic Pigments on the Compressive Strength and Absorption of Cement Mortars)

  • 송혁;이재용;고성석
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.104-111
    • /
    • 2004
  • The aim of this study was to investigate the influence of inorganic pigments on the physical properties of cement mortar. For this purpose, the compressive strength and absorption test were carried out on cement mortar imxed with inorganic pigments by changing the proportion of cement mortar, water-cement ratio, and ratio of pigment. The result of this study can be summarized as follows: the compressive strength of colored mortar rapidely increased in red and yellow mortar, as the mix ratio of pigment increased. In case of green and black mortar, however, the compressive strength decresed as the mix ratio incresed. In case of red and yellow mortar, the absorption of colored mortar increased as the mixing ratio increased, if the mean particle diameter of the pigment is small. In case of green and black mortar, the absorption ratio decreased as the mix ratio increased. After investigating the overall physical properties of colored mortar, it was confirmed that the proper mix ratio of pigment securing the properties of colored mortar was below 6% of the weight of the cement to be used.

A mortar mix proportion design algorithm based on artificial neural networks

  • Ji, Tao;Lin, Xu Jian
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.357-373
    • /
    • 2006
  • The concepts of four parameters of nominal water-cement ratio, equivalent water-cement ratio, average paste thickness, fly ash-binder ratio were introduced. It was verified that the four parameters and the mix proportion of mortar can be transformed each other. The behaviors (strength, workability, et al.) of mortar primarily determined by the mix proportion of mortar now depend on the four parameters. The prediction models of strength and workability of mortar were built based on artificial neural networks (ANNs). The calculation models of average paste thickness and equivalent water-cement ratio of mortar can be obtained by the reversal deduction of the two prediction models, respectively. A mortar mix proportion design algorithm was proposed. The proposed mortar mix proportion design algorithm is expected to reduce the number of trial and error, save cost, laborers and time.