• Title/Summary/Keyword: Cement Manufacturing

Search Result 388, Processing Time 0.029 seconds

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

Shrinkage Characteristic of Cementitious Composite Materials for Additive Manufacturing (적층공법을 적용한 시멘트계 복합재료의 수축특성)

  • Lee, Hojae;Kim, Ki-Hoon;Yoo, Byeong-Hyun;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2019
  • In the present study is focused on the evaluation of the shrinkage characteristics of mix proportion using viscosity agent for printing. Also, another purpose is to compare the shrinkage properties of the mold cast specimen with the additive manufactured specimen using 3D printing techniques. Viscosity agent makes the shrinkage was reduced by an average of 25% (as of 56 days) compared to the reference mix. The effects of reduced shrinkage were also founded, with a reduction of about 15% (as of 28 days).As a result of evaluating the shrinkage using the additive manufactured specimen and the mold cast specimen prepared by the printing mix, the shrinkage of the additive manufactured specimen was reduced by about 25% (based on 28 days). Based on the results of this study, it is possible to predict the shrinkage rate and the occurrence of cracks due to shrinkage on the printing of cement-based composite materials using 3D printing.

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (1) (산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (1))

  • Park, Soo Hyun;Chu, Yong Sik;Seo, Sung Kwan;Park, Jae Wan
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.3-11
    • /
    • 2014
  • Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by calcinating method in the cement manufacturing process in order to reduce manufacturing costs and increase productivity. Limestone and calcination sludge were used as CaO source, steelmaking sludge, blast furnace dust and iron ore were used as Fe-bearing raw materials. The sintering temperature of specimens is in the range of $950{\sim}1170^{\circ}C$. For Calcium ferrite can be used 'binder for making sintered ore' or 'flux for converter/electric furnace' with a low melting point properties, the raw material characteristics and sintering properties were investigated.

Properties of Mortar with Polysilicon Sludge Based Active Loess Cement (활성황토 시멘트 기반 폴리실리콘 슬러지를 사용한 모르타르의 특성)

  • Kang, Jeon-Uk;Kim, Dae-Yeon;Shin, Jin-Hyeon;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.275-282
    • /
    • 2018
  • This study examines the ways to address environmental issues by utilizing activated loess to reduce the amount of cements that emit a large amount of carbon dioxide during the process of manufacturing, and by reusing the polysilicon sludge produced as a result of manufacturing polysilicon, one of the components for solar power generation panels. The findings of the experiment showed that the optimal replacement ratio of the polysilicon sludge is 20%, 35% for W/B, and 20% for the ratio of the fine aggregate addition. As it is deemed that utilizing the polysilicon sludge for reinforced concrete may lead to rebar corrosion due to the $CI^-$ contained in the sludge, it can be considered to use for unreinforced concrete or bricks.

A Sugeestion of Rheological Performance Range for Manufacturing Mid-workability Concrete (중유동 콘크리트 제조를 위한 레올로지 성능 범위 제안)

  • Lee, Yu-Jeong;Lee, Young-Jun;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.305-318
    • /
    • 2021
  • The aim of the research is providing the rheological performance range for manufacturing "mid-workability concrete". The mid-workability concrete means the normal strength range concrete mixture with high workability. Since there is not enough study or quantitative definitions on performance of the mid-workability concrete, in this research, the performance range for high workability of mid-workability concrete mixture using rheology. Because of the mixture characteristics of generally used normal strength concrete such as relatively high water-to-cement ratio and no SCMs, segregation of coarse aggregate should be prevent to achieve a successful high workability. From the experimental study in this research scope, 5 to 35 Pa.s of plastic viscosity was desirable to prevent segregation for nid-workability concrete, and general performance range with rheological parameters was provided.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

Experimental Study on Engineering Properties of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Yang Il-Seung;Yun Hyun-Do;Kim Do-Su;Khil Bae-Su;Han Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.769-774
    • /
    • 2005
  • Fluosilicic acid(H2SiF6) is recovered as an aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded H3PO4 or HF. Generally, fluosilicates are the salts produced by the reaction of H2SiF6 and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. This study was performed to know mechanical properties and watertightness using fluosilicates based composite made from fluosilicates and other compounds. Mix proportions for experiments were modulated at 0.45 of water to cement ratio and $0.0-2.0\%$ of adding ratio of fluosilicates based composite. Evaluation for mechanical properties of concrete was conducted to know fresh state of concrete, hardening state of concrete, and watertightness. Evaluation for watertightness of concrete was carried out permeability, absorption test and porosity analysis. In addition. Scanning Electron Microscopy(SEM) and Energy Dispersive X-Ray(EDX) used for investigating micro-structure and atomic component distributed in hardened concrete. It is ascertained that characteristics of mechanical properties and watertightness was more improved than non-added because of packing role of fluosilicates based composite and pozzolanic reaction of soluble $SiO_2$. Also, concrete added fluosilicates based composite had a tendency to delay setting time and only $0.5\%$ addition of fluosilicates based composite delayed 150 minutes compared with non-added.

Implant-supported fixed prostheses with high-performance polymer (PEKK) abutments in partial edentulous patients: A case report (부분 무치악 환자에서 고기능성 폴리머(PEKK) 지대주를 이용한 임플란트 고정성 보철물 수복 증례)

  • Ha, Seung-Ryong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • Implant treatment, which was first attempted in fully edentulous patients, is now widely used in partially edentulous, and a single tooth missing patients. Moreover, implant treatment has become an essential treatment modality in modern dentistry. The material of fabricating implant prostheses has also become more diverse than before, one of which is the use of high-performance polymers. The frequency of using high-performance polymers, which have been used in the medical field, is also increased in the dental field compared to the past. In the first case, a PEKK abutment and a PFG crown (cement-screw-retaining type) were fabricated in the lower left second premolar, and in the second case, a PEKK abutment and a monolithic zirconia crown (cement-screw-retaining type) were fabricated in the missing upper left first molar, and in the third case two PEKK abutments and a splinted PFM crowns (cement-screw-retaining type) were fabricated and connected to the upper right first and second molar implants. Through these procedures the patients obtained esthetically and functionally satisfactory results after 4 years of follow-up.

Comparison of micro CT and cross-section technique for evaluation of marginal and internal fit of lithium disilicate crowns (전부 도재관의 변연 및 내면 간극에 대한 micro CT와 절단 시편 측정법의 비교)

  • Ko, In-Seok;Kim, Jeong-Mi;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.226-233
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the adaptation of lithium disilicate crowns fabricated by CAD-CAM (computer aided design-computer aided manufacturing) and heat-press technique to compare two different measurement methods in assessing fit of the ceramic crowns: micro CT and cross-section technique. Materials and methods: A prepared typodont mandibular molar for ceramic crown was duplicated and ten dies were produced by milling the PMMA (polymethylmethacrylate) resin. Ten vinyl polysiloxane impressions were made and stone casts were produced. Five dies were used for IPS e.max Press crowns with heat-press technique. The other five dies were used for IPS e.max CAD crowns with CAD-CAM technique. Ten lithium disilicate crowns were cemented on the resin dies using zinc phosphate cement with finger pressure. The marginal and internal fits in central buccolingual plane were evaluated using a micro CT. Then the specimens were embedded and cross-sectioned and the marginal and internal fits were measured using scanning electronic microscope. The two measurement methods and two manufacturing methods were compared using Mann-Whitney U test (SPSS 22.0). Results: The marginal and internal fit values using micro CT and cross-section technique were similar, showing no significant differences. There were no significant differences in adaptation between lithium disilicate crowns fabricated with CAD-CAM and heat-press technique. Conclusion: Both micro CT and cross-section technique were acceptable methods in the evaluation of marginal and internal fit of lithium disilicate crown. There was no difference in adaptation between lithium disilicate crowns fabricated with CAD-CAM and heat-press technique except occlusal fit.

Multiple Polyamide Fiber Reinforced Shotcrete for Railway Tunnel Structure (철도 터널 구조물 시공을 위한 다발형 폴리아미드섬유 보강 숏크리트)

  • Jeon, Joong-Kyu;Chung, Jae-Min;Yoon, Ji-Hyun;Jeon, Chan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1214-1219
    • /
    • 2011
  • Fiber reinforced shotcrete began to be used in tunnel constructions because it facilitates and expedites the construction process, and improves reinforcement properties. As one of the most widely used forms of shotcrete used in tunneling, steel fiber reinforced shotcrete offers excellent strength and ductility and allows quick reinforcement. However, steel fibers tend to lump together in cement matrix, and low levels of water and acid resistance cause corrosion in steel fiber, resulting in cracks and delamination. In particular, rebound and backlash of steel fiber is significantly increased during steel fiber reinforced shotcrete construction, compromising the flexural toughness and quality of shotcrete. In order to resolve the problems associated with steel fiber reinforced shotcrete and improve the application, durability, and cost-effectiveness of shotcrete, this paper proposes methods for manufacturing and constructing tunnels with multiple polyamide fiber reinforced shotcrete. We performed experiments to evaluate the performance of the proposed shotcrete, and the experimental results indicate that the multiple polyamide fiber reinforced shotcrete proposed in this paper offers outstanding performance that meets various construction design criteria.

  • PDF