• Title/Summary/Keyword: Cement Manufacturing

Search Result 388, Processing Time 0.023 seconds

Reaction Properties of Non-Cement Mortar Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 무시멘트 경화체의 반응 특성)

  • Park, Sun-Gyu;Kwon, Seung-Jun;Kim, Yun-Mi;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.392-399
    • /
    • 2013
  • The purpose of this study is to identify the manufacturing possibility of non-cement mortar using blast furnace slag and alkali accelerator. In this experimental study, the blast furnace slag which is the by-product of the steel industry substitute for cement, and the potassium hydroxide(KOH), calcium hydroxide ($Ca(OH)_2$) and sodium hydroxide(NaOH) as stimulus were added to each specimen. And the analysis on reaction property of non-cement mortar was conducted by measurement such as flexural and compressive strength, XRD, EDS and SEM. From the test results, it can be founded that $SiO_2$ and CaO included in the blast furnace slag are released and make the calcium silicate hydrate like the hydration reaction of the cement. Also, the continued study is need to reduce emission of $CO_2$ because of major content in filed of the building construction.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Effect of Low-grade Limestone on Raw Mill Grinding and Cement Clinker Sintering (저품위 석회석이 원료밀의 분쇄성과 시멘트 클링커 소성성에 미치는 영향)

  • Yoo, Dong-Woo;Park, Tae-Gyun;Choi, Sang-Min;Lee, Chang-Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2021
  • The cement clinker, the main raw material of cement, is manufactured using limestone as the main material. Depending on the quality of limestone, the use of subsidiary materials changes, and has a great influence on the production of cement clinkers. In this study, the effect of CaO content of limestone, a cement clinker material, on Raw Mill grinding and sintering of cement clinker was investigated. The grinding time of the union materials changed in the content of limestone CaO was measured to identify the grinding properties. The raw material combination was cleaned within a range of 1,350-1,500℃. The sintering performance of cement clinker by Burnability index calculation was identified. The lower the grade of limestone, the lower the grinding quality of the raw material combination. The lower the CaO content of limestone, the greater the variation in F-CaO for sintering temperature. The lower the class of limestone, the higher B. I. value was calculated, indicating the lower cement clinker sintering. In addition, the mineral analysis results of cement clinker showed that if the F-CaO value was low due to the increase in sintering temperature, the Belite content decreased and the Alite content increased. In the case of Alite, the ratio of R-type decreased and that of M-type increased as the content of limestone CaO increased.

Effect of Change in Coal Ash Content on Sinterability and Phase Change of Cement Clinker (석탄재의 함량변화가 시멘트 클링커의 소성성 및 상변화에 미치는 영향)

  • Dong-Woo Yoo;Young-Jin Im;Sang-Min Choi;Sung-Ku Kwon;Seok-Je Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • Coal ash generated from thermal power plants using briquettes contains Si, Al, and Fe components. These components are the main components required for the manufacture of cement clinker. In particular, Al and Fe components form the interstitial phase of cement clinker and have an important effect on the sintering of cement clinker. In this study, a large amount of coal ash was applied as a raw material for cement clinker by content, and the mineral formation process of cement clinker to which coal ash was applied was confirmed by sintering temperature. It was confirmed that the intermediate phase was generated in the sintering temperature range of 1050 ~ 1150 ℃ in the cement clinker to which a large amount of coal ash was applied. As the content of coal ash increased, the production amount of the intermediate phase increased. The phase produced by the addition of coal ash is expected to be converted to calcium silicate phase and interstitial phase and disappear above 1350 ℃. The cement clinker applied with a large amount of coal ash at 1450 ℃ formed well-developed minerals equivalent to the standard cement clinker.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.

Properties of Mixed Concrete Using Metakaolin and Copper Slag (메타카올린과 동(銅)슬래그를 활용한 콘크리트의 특성(特性))

  • Kim, Nam-Wook;Kim, Hak-Won;Bae, Ju-Seong
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Much energy is consumed up when making a concrete. And especially, because lots of $CO_2$ is discharged for combination material, cement, we are making efforts in order to get lid of this negative thought. Recently, much interest is given to manufacturing eco concrete which is environment friendly and its' application. We should study manufacturing of the concrete whose environment friendly performance should be improved as consistent development concept in order for various approaches to be settled down our country such as lowering of environmental load, utilization of industry wastes and improvement of environment related performance. This study inquired into utilization possibility through from various tests results after manufacturing eco type mixed concrete whose purpose is to lower environmental load in which cement and aggregates can be replaced with metakaolin which is natural material and copper slag which is industry by product.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

A Study on NOx Emission Control Methods in the Cement Firing Process Using Data Mining Techniques (데이터 마이닝을 이용한 시멘트 소성공정 질소산화물(NOx)배출 관리 방법에 관한 연구)

  • Park, Chul Hong;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.3
    • /
    • pp.739-752
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the relationship between kiln processing parameters and NOx emissions that occur in the sintering and calcination steps of the cement manufacturing process and to derive the main factors responsible for producing emissions outside emission limit criteria, as determined by category models and classification rules, using data mining techniques. The results from this study are expected to be useful as guidelines for NOx emission control standards. Methods: Data were collected from Precalciner Kiln No.3 used in one of the domestic cement plants in Korea. Thirty-four independent variables affecting NOx generation and dependent variables that exceeded or were below the NOx emiision limit (>1 and <0, respectively) were examined during kiln processing. These data were used to construct a detection model of NOx emission, in which emissions exceeded or were below the set limits. The model was validated using SPSS MODELER 18.0, artificial neural network, decision treee (C5.0), and logistic regression analysis data mining techniques. Results: The decision tree (C5.0) algorithm best represented NOx emission behavior and was used to identify 10 processing variables that resulted in NOx emissions outside limit criteria. Conclusion: The results of this study indicate that the decision tree (C5.0) can be applied for real-time monitoring and management of NOx emissions during the cement firing process to satisfy NOx emission control standards and to provide for a more eco-friendly cement product.

Experimental Study on the Material Characteristics of Slag Cement with Various Phosphogypsum Materials (인산부산석고의 각 형태조건에 따른 슬래그 시멘트의 품질특성에 관한 실험적 연구)

  • Park, Jong-Tak;Oh, Hong-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.729-735
    • /
    • 2009
  • In this study, it is experimentally verified a feasibility of the wasted phosphogypsum ($CaSO_4/H_2O$) that is a byproduct from the phosphoric acid process of manufacturing fertilizers can be applied as an admixture in slag cement. For the test, phosphogypsum is modified as dihydrate, hemihydrate, type III anhydrite, and type II anhydrite, and then chemical characteristics and mechanical properties of various slag cements containing above mentioned gypsum materials were analyzed. The test results show that the gypsum made at high temperature has better quality with decrease of water-soluble phosphoric acid ($S-P_2O_5$) which has an effect on the quality of cement. And type II anhydrite shows superior quality in terms of drying shrinkage and the compressive strength of cement paste with hemihydrate at 56 days is higher than other gypsum material.

Evaluation of Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Chu, Yong-Sik;Song, Hun;Park, Ji-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.598-603
    • /
    • 2012
  • MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.