• Title/Summary/Keyword: Cellulosic Biomass

Search Result 56, Processing Time 0.029 seconds

Characterization of a Xylanase Produced by Bacillus sp. N-25 (Bacillus sp. N-25가 생산하는 Xylanase의 특성)

  • 김원곤;이찬용;이계호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.559-564
    • /
    • 1992
  • To increase the efficency of utilizing cellulosic biomass, a potent xylanase producing bacteria was isolated and identified as Bacillus sp. N-25. Extracellular xylanase from Bacillus sp. N-25 was partially purified by ammonium sulfate precipitation, DEAE-Sephadex A-25 and Sephadex G-IOO column chromatographies. The xylanase was single fraction on chromatography and was true xylanase without cellulase activity. The enzyme was stable at pH 6-8 and 80% activity was remained at $50^{\circ}C$ for 30 min, but was inhibited by $Hg^{2+}$, $Ag^{2+}$, and $Mn^{2+}$. From the fact that the major end product was xylose, we suggested that the enzyme is an exo-xylanase which may be a prime candidate for industrial use.

  • PDF

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1 (Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화)

  • Cha, Young-Lok;Yoon, Young-Mi;Yoon, Ha-Yan;Kim, Jung Kon;Yang, Ji-Young;Na, Han-Beur;Ahn, Jong-Woong;Moon, Youn-Ho;Choi, In-Hu;Yu, Gyeong-Dan;Lee, Ji-Eun;An, Gi Hong;Lee, Kyeong-Bo
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.283-290
    • /
    • 2015
  • In this study was selected the cellulolytic microorganism and investigated optimum condition of cellulase production for the cellulosic bioethanol production. A bacterial strain Paenibacillus jamilae BRC15-1, was isolated from soil of domestic reclaimed land. For optimizing cellulase production from the selected strain, various culture parameters were investigated such as culture medium, pH (pH 4~10), temperature ($25{\sim}50^{\circ}C$) and culture time (2~72 h). As a result, P. jamilae BRC15-1 efficiently produced cellulase from cellulosic biomass under following conditions: 24 h of culture time (pH 7, $40^{\circ}C$) in manufactured media of CMC (carboxymethyl cellulose) with peptone. Optimum saccharifying condition of crude enzyme produced from P. jamilae BRC15-1 was identified on pH 6 and $40^{\circ}C$ of reaction temperature, respectively. This crude enzyme from P. jamilae BRC15-1 was used for saccharification of pretreated sweet sorghum (Sorghum bicolor var. dulciusculum Ohwi) bagasse under the optimal condition. Finally, pretreated sweet sorghum bagasse including 0.1 g of glucan was saccharified by crude enzyme of P. jamilae BRC15-1 into 2.75 mg glucose, 0.79 mg xylose and 1.12 mg arabinose.

Development of "Miscanthus" the Promising Bioenergy Crop (유망 바이오에너지작물 "억새" 개발)

  • Moon, Youn-Ho;Koo, Bon-Cheol;Choi, Yoyng-Hwan;Ahn, Seung-Hyun;Bark, Surn-Teh;Cha, Young-Lok;An, Gi-Hong;Kim, Jung-Kon;Suh, Sae-Jung
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.330-339
    • /
    • 2010
  • In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.

Optimization of Simultaneous Saccharification and Fermentation of Rice Straw to Produce Butanol (Butanol 생산을 위한 동시 당화 발효법의 최적화)

  • Jun, Young-Sook;Kwon, Gi-Seok;Kim, Byung-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.213-218
    • /
    • 1988
  • Studies were made to optimize the simultaneous saccharification and fermentation (SSF) of rice straw to produce butanol using Clostridium acetobutylicum KCTC 1037 and a cellulolytic enzyme preparation from Trichoderma viride. The fermentation was inhibited when the liquid enzyme preparation from Novo was used, whilst a successful fermentation was achieved in the SSF using the enzyme manufactured by Pacific Chemical Co. The minimum cellulase concentration for the successful fermentation of pure cellulose was found to be 4 IU/g of substrate used. Alkaline treatment was better method for the fermentation of rice straw by the system. SSF using 25% alkaline treated rice straw produced 150 mM butanol, 90 mM acetone. On the other hand, fermentation of ball milled rice straw was mainly acidogenic producing 98 mM acetate and 64 mM butyrate with less than 20 mM butanol. These results show that rice straw contains (a) specific inhibitor(s) for solventogenesis which is destroyed or soluble in alkali.

  • PDF

Effect of SAA Pretreatment on SSF at Low Temperature to Bioethanol Production from Rice Straw (암모니아수 침지 전처리 공정을 이용한 볏짚의 저온 동시당화발효)

  • Jang, Suh Yoon;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • Physical and chemical barriers, caused by the close association of the main components of cellulosic biomass, hinder the hydrolysis of cellulose to fermentable sugars. Since the main goal of pretreatment is to increase the enzyme accessibility improving digestibility of cellulose, development of an effective pretreatment process has been considered to be important. In this study, SAA (Soaking in Aqueous Ammonia) was chosen as pretreatment because this is the simple and low-cost method. Rice straw of which the production is outstandingly high in domestic agriculture residues in Korea was chosen as raw material. SSA pretreatment with various reaction time of 3 h to 72 h was tested. The enzymatic hydrolysis and SSF (Simultaneous Saccharification and Fermentation) were performed at three different temperature (30, 40 and $50^{\circ}C$) to investigate performance of SSF upon various pretreatment conditions. As a result, this SAA treated-rice straw was found to have great potential for effective enzymatic hydrolysis and SSF with lower enzyme dosage at lower temperature ($30^{\circ}C$) than its conventional SSF. In SAA addition, SAA reduced fermentation time to 24 h owing to increase the initial hydrolysis rate substantially.

Formation and Fusion of Protoplasts from the Cellulolytic Fungi, Aspergillus niger MAN-831 and Aspergillus wentii MAW-538 (Cellulase를 생산하는 Aspergillus niger MAN-831과 Aspergillus wentii MAW-538의 원형질체 형성 및 융합)

  • 박석규;이상원;문일식;손봉수;강성구
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.964-969
    • /
    • 1995
  • For the effective utilization of cellulosic biomass, conidial protoplast fusion between Aspergillus niger MAN-831(${\beta}-glucosidase$) and A. wentii MAW-538(CMCase and avicelase), which produced potently cellulolytic enzymes was carried out. Optimal conditions for formation and regeneration of protoplast were conidiospore age-5 dyuas. $2-DG-30\mu\textrm{g}/ml$, preincubation time-4 hours, osmotic stabilizer-0.7M KCl, novozyme(7mg/ml)+driselase(2.5mg/ml) and reaction time of enzyme-5 hours. Optimal conditions for protoplast fusion were obtained by treatment of protoplasts with 15mM CaCl2 and 25% polyethylene glycol 4000(pH 6~7) as fusogenic agent at $36^{\circ}C$ for 25~30 minutes. The frequency was then $7.94{\times}10^{-4}$. CMCase, avicelase and ${\beta}-glucosidase$ activity of fusant F-208 strain was 1.5, 1.3, 1.2 times higher than those of parental strains, respectively.

  • PDF

Enzymatic Characteristics of a Highly Thermostable β-(1-4)-Glucanase from Fervidobacterium islandicum AW-1 (KCTC 4680)

  • Jeong, Woo Soo;Seo, Dong Ho;Jung, Jong Hyun;Jung, Dong Hyun;Lee, Dong-Woo;Park, Young-Seo;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.271-276
    • /
    • 2017
  • A highly thermostable ${\beta}-(1-4)-glucanase$ (NA23_08975) gene (fig) from Fervidobacterium islandicum AW-1, a native-feather degrading thermophilic eubacterium, was cloned and expressed in Escherichia coli. The recombinant FiG (rFiG) protein showed strong activity toward ${\beta}-{\small{D}}-glucan$ from barley (367.0 IU/mg), galactomannan (174.0 IU/mg), and 4-nitrophenyl-cellobioside (66.1 IU/mg), but relatively weak activity was observed with hydroxyethyl cellulose (5.3 IU/mg), carboxymethyl cellulose (2.4 IU/mg), and xylan from oat spelt (1.4 IU/mg). rFiG exhibited optimal activity at $90^{\circ}C$ and pH 5.0. In addition, this enzyme was extremely thermostable, showing a half-life of 113 h at $85^{\circ}C$. These results indicate that rFiG could be used for hydrolysis of cellulosic and hemicellulosic biomass substrates for biofuel production.

Recent Progress in Strain Development of Zymomonas mobilis for Lignocellulosic Ethanol Production (Zymomonas mobilis를 이용한 목질계 에탄올 생산을 위한 균주 개선에 관한 연구 동향)

  • Jeon, Young Jae
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.135-145
    • /
    • 2019
  • Zymomonas mobilis has been recognized as a potential industrial ethanologen for many decades due to its outstanding fermentation characteristics, including high ethanol tolerance, fast sugar uptake rate, and high theoretical ethanol yield. With the emergence of the postgenomic era and the recent announcement of DuPont's world largest cellulosic ethanol production process, research on this bacterium has become even more important to harness successful application not only for use in the bioethanol process but also in other biochemical processes, which can be included in bio-refinery. As an important industrial microorganism, Z. mobilis will likely be exposed to various stressful environments, such as toxic chemicals, including the end-product ethanol and fermentative inhibitory compounds (e.g., furan derivatives, organic acids, and lignin derivatives in pretreatment steps), as well as physical stresses, such as high temperature during large-scale ethanol fermentation. This review focuses on recent information related to the industrial robustness of this bacterium and strain development to improve the ethanol yield and productivity in the lignocellulosic ethanol process. Although several excellent review articles on the strain development of this bacterium have been published, this review aims to fill gaps in the literature by highlighting recent advances in physiological understanding of this bacterium that may aid strain developments and improve the ethanol productivity for lignocellulosic biomass.

Evaluation, Characterization and Molecular Analysis of Cellulolytic Bacteria from Soil in Peshawar, Pakistan

  • Ikram, Hira;Khan, Hamid Ali;Ali, Hina;Liu, Yanhui;Kiran, Jawairia;Ullah, Amin;Ahmad, Yaseen;Sardar, Sadia;Gul, Alia
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.245-254
    • /
    • 2022
  • Cellulases are a group of biocatalyst enzymes that are capable of degrading cellulosic biomass present in the natural environment and produced by a large number of microorganisms, including bacteria and fungi, etc. In the current study, we isolated, screened and characterized cellulase-producing bacteria from soil. Three cellulose-degrading species were isolated based on clear zone using Congo red stain on carboxymethyl cellulose (CMC) agar plates. These bacterial isolates, named as HB2, HS5 and HS9, were subsequently characterized by morphological and biochemical tests as well as 16S rRNA gene sequencing. Based on 16S rRNA analysis, the bacterial isolates were identified as Bacillus cerus, Bacillus subtilis and Bacillus stratosphericus. Moreover, for maximum cellulase production, different growth parameters were optimized. Maximum optical density for growth was also noted at pH 7.0 for 48 h for all three isolates. Optical density was high for all three isolates using meat extract as a nitrogen source for 48 h. The pH profile of all three strains was quite similar but the maximum enzyme activity was observed at pH 7.0. Maximum cellulase production by all three bacterial isolates was noted when using lactose as a carbon rather than nitrogen and peptone. Further studies are needed for identification of new isolates in this region having maximum cellulolytic activity. Our findings indicate that this enzyme has various potential industrial applications.