• Title/Summary/Keyword: Cellulophaga lytica

Search Result 4, Processing Time 0.019 seconds

Biological Degradation of Cypermethrin by Marine Bacteria, Cellulophaga lytica DAU203 (해양 세균 Cellulophaga lytica DAU203에 의한 사이퍼메트린의 생물학적 분해)

  • Lee, Je-Hoon;Lee, Yong-Suk;You, Ah-Young;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.483-487
    • /
    • 2018
  • Cypermethrin, a commonly used domestic and agricultural pyrethroid pesticide, is widely considered detrimental to the environment and to many organisms because of its residual property and toxicity. Cellulophaga lytica DAU203, isolated from coastal sediment, was chosen because it degrade cypermethrin. Cellulophaga lytica DAU203 effectively degraded cypermethrin, as the utilized carbon source and substrate, in a mineral salt medium. Effective factors, such as carbon source, nitrogen source, initial pH, and temperature, for cypermethtin biological degradation by Cellulophaga lytica DAU203 were analyzed by one factor at a time method. Temperature ($22{\sim}42^{\circ}C$), initial pH (5~9), and yeast extract concentration (0.1~2.5%[w/v]) were selected as the three most important factors. There were optimized at $33.4^{\circ}C$, pH 7.7, and 2.4%(w/v) by response surface methodology, respectively. The Box- Behnken design consisting of 46 experimental runs with three replicates was used to optimize the independent variables which significantly influenced the cypermethrin biological degradation. This model for cypermethrin degradation by Cellulophaga lytica DAU203 is highly significant (p<0.05). Under the optimized condition, Cellulophaga lytica DAU203 degraded approximately 83.7 % of the cypermethrin within 5 days. These results suggest that Cellulophaga lytica DAU203 may be useful for the biological degradation of cypermethrin in cypermethrin-contaminated environments.

Optimization and Characterization of Conditions for Cellulose-degrading Crude Enzymes Produced by Cellulophaga lytica PKA 1005 (Cellulophaga lytica PKA 1005의 Cellulose 분해 조효소 생산 최적 조건과 조효소의 특성)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Kim, Bo-Ram;Park, Hong-Min;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.18-24
    • /
    • 2014
  • This study was conducted to investigate optimum conditions for the production of cellulose-degrading crude enzymes by an isolated marine bacterium. A marine microorganism producing an extracellular cellulose-degrading enzyme was isolated from the red seaweed, Grateloupia elliptica Holmes. The isolated bacterium was identified as Cellulophaga lytica by 16S ribosomal RNA gene sequence analysis and physiological profiling and designated as Cellulophaga lytica PKA 1005. The optimum conditions for the growth of Cellulophaga lytica PKA 1005 were pH 7, 2% NaCl, and $30^{\circ}C$ with 36 h incubation time. To obtain the crude enzyme, the culture medium of the strain was centrifuged for 30 min at $12,000{\times}g$ and $4^{\circ}C$, and the supernatant was used as crude enzyme. The optimum conditions for the production of the cellulose-degrading crude enzyme were pH 8, $35^{\circ}C$, 8% carboxyl methyl cellulose, and 60 h reaction time.

Enhanced Carboxymethylcellulase Production by a Newly Isolated Marine Bacterium, Cellulophaga lytica LBH-14, Using Rice Bran

  • Gao, Wa;Lee, Eun-Jung;Lee, Sang-Un;Li, Jianhong;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1412-1422
    • /
    • 2012
  • The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were $35^{\circ}C$ and $25^{\circ}C$, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran (파이롯트 규모에서 미강을 이용한 해양미생물 Cellulophaga lytica LBH-14 유래의 cellobiase 생산)

  • Cao, Wa;Kim, Hung-Woo;Li, Jianhong;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.542-553
    • /
    • 2013
  • The aim of this work was to establish the optimal conditions for the production of cellobiase by a marine bacterium, Cellulophaga lytica LBH-14, using response-surface methodology (RSM). The optimal conditions of rice bran, ammonium chloride, and the initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for the production of cellobiase were 91.1 g/l, 9.02 g/l, and 6.6, respectively. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}_{7H2}O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for the production of cellobiase were 4.46, 0.36, 0.27, and 0.73 g/l, respectively. The optimal temperatures for cell growth and for the production of cellobiase by C. lytica LBH-14 were 35 and $25^{\circ}C$, respectively. The maximal production of cellobiase in a 100 L bioreactor under optimized conditions in this study was 92.3 U/ml, which was 5.4 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of cellobiase by C. lytica LBH-14. The time for the production of cellobiase by the marine bacterium with submerged fermentations was reduced from 7 to 3 days, which resulted in enhanced productivity of cellobiase and a decrease in its production cost. This study found that the optimal conditions for the production of cellobiase were different from those of CMCase by C. lytica LBH-14.