• Title/Summary/Keyword: Cellular transformation

Search Result 132, Processing Time 0.029 seconds

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung;Park, Jeong-Soo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

Screening of Differential Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

  • Khor, Goot Heah;Froemming, Gabrielle Ruth Anisah;Zain, Rosnah Binti;Abraham, Mannil Thomas;Thong, Kwai Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8957-8961
    • /
    • 2014
  • Background: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). Objectives: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR). Materials and Methods: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis. Results: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status. Conclusions: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

Manipulation of Antioxidative Mechanism in Chloroplasts

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.79-84
    • /
    • 1999
  • Oxidative stress is one of the major environmental stresses to plants. Reactive oxygen species (ROS) generated during metabolic processes damage cellular functions and consequently lead to cell death. Fortunately plants have in vivo defense system by which the ROS is scavenged by enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). In attempts to understand the protection mechanism of plant against oxidative stress, we developed transgenic tobacco (Nicotiana tabacum cv. Xanthi) plansts thet expressed both SOD and APX in chloroplast using Agrobacterum-mediated transformation and evaluated their protection capabilities against methyl viologen (MV, paraquat) -mediated oxidative damage. Three double transformants (CAI, CA2, and CA3) expressed the chimeric CuZnSOD and chimeric APX in chloroplast, and one transformant (AM) expressed the chimeric APX and chimeric MnSOD in chloroplast. In addition, we obtained three lines of transformants (C/Al, C/A2, and A/C) that expressed the APX and SOD than control plants, and more resistant to oxidative stress caused by MV. TRansformants (C/A and A/C) overexpressing MnSOD, CuZnSOD and APX at the same time showed the highest resistance to MV-mediated oxidative stress among the transformants.

  • PDF

Performance Improvments of Inter-System Handoff for IMT-2000 (IMT-2000을 위한 시스템간 핸드오프의 성능 향상)

  • Choo, Hyun-Seung;Youn, Hee-Yong;Choi, Dae-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.945-952
    • /
    • 2002
  • For a successful inter-system handoff, several important issues must be handled and additional new features must be considered. This paper focuses on the cellular structure of small cells which are required for the high density of population and a handoff scheme designed between two heterogenous networks. Incase of inter-system handoff (ISHO), the time required to complete the handoff can vary and depends on the structure of networks. And also the transmission of additional signals can increase the probability of failure for ISHO. Here we propose the sub-boundary cell base station (Sub-BBS) to alleviate the role of the BBS. The Sub-BBS is adjacent to BBS in the same regional mobile network. 쪼en the mobile terminal enters Sub-BBS, the network starts finding a new route and after entering BBS, it initiates the transformation process. The proposed scheme significantly reduces the ISHO failure rate compared to the existing one which is the most recent and known as efficient.

Structural Changes of Adhesive Discs during Attachment of Boston Ivy

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.111-116
    • /
    • 2014
  • This study investigates the developmental pattern of adhesive discs (ADs) to highlight the ontogeny and structural changes that occur during the growth of Boston ivy. Initiation to postmortem features of ADs were examined through light and scanning electron microscopy. The study also reveals a new finding of the dislocation of peripheral tissues of adaxial origin. Four phases of attachment are suggested with regards to its climbing behavior: 1) pre-attachment, 2) upon attachment, 3) after attachment, and 4) final attachment. During initiation, several ADs originate from tendril primordia without epidermal differentiation. However, different growth rates in the epidermis results in completely different ADs. ADs were discerned by size, shape, and color during expansion, but cells in the adaxial surface remained alive longer than the other side. Upon contact, the ADs demonstrate simultaneous growth and deterioration, but once attachment is established the latter process subdues to final stages. Epidermal transformation, adhesive secretion, cellular disruption, and mechanical stress were essential for the self-clinging nature of Boston ivy. The post-attachment sequence is also believed to be critical in achieving maximum mechanical strength to provide extensive support. The developmental process of ADs is prompted by tactile stimulation but in a highly organized and systematic manner.

Src Redox Regulation: There Is More Than Meets the Eye

  • Chiarugi, Paola
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.329-337
    • /
    • 2008
  • Src-family kinases are critically involved in the control of cytoskeleton organization and in the generation of integrin-dependent signaling responses, inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins. Activity of the Src family of tyrosine kinases is tightly controlled by inhibitory phosphorylation of a carboxy-terminal tyrosine residue, inducing an inactive conformation through binding with its SH2 domain. Dephosphorylation of C-ter tyrosine, as well as its deletion of substitution with phenylalanine in oncogenic Src kinases, leads to autophosphorylation at a tyrosine in the activation loop, thereby leading to enhanced Src activity. Beside this phophorylation/dephosphorylation circuitry, cysteine oxidation has been recently reported as a further mechanism of enzyme activation. Mounting evidence describes Src activation via its redox regulation as a key outcome in several circumstances, including growth factor and cytokines signaling, integrin-mediated cell adhesion and motility, membrane receptor cross-talk as well in cell transformation and tumor progression. Among the plethora of data involving Src kinase in physiological and pathophysiological processes, this review will give emphasis to the redox component of the regulation of this master kinase.

Anatomical, Chemical, and Topochemical Characteristics of Transgemic Poplar Down-regulated with O-methyltransferase

  • Wi, Seung Gon;Lee, Kwang Ho;Park, Byung Dae;Park, Young Goo;Kim, Yoon Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.15-24
    • /
    • 2004
  • The present work was undertaken to investigate the anatomical and chemical characteristics of transgenic poplar down-regulated with antisense OMT gene. Also the distribution of lignin in transgenic poplar trees was investigated at cellular level. No visible abnormal phenotype was observed in the fibers and vessel elements of transgenic poplar. Any marked differences in the staining intensities of Wiesner and Mäule color reaction were not identified in the transgenic poplar. TEM micrographs did not show any staining intensities in the cell walls stained with KMnO4. Interestingly, the UV spectroscopy of semi-thin sections exhibited a distinct decrease of lignin absorption at 280 nm in the vessel walls, indicating transgenic poplar wood with lower amount of guaiacyl lignin in vessel elements. Chemical composition of antisense OMT poplar was almost identical to that of wild-type poplar. Klason lignin content of transgenic poplar did not show any significant difference from that of the controls. The solid state NMR spectra revealed the transgenic poplar with only slightly more syringyl lignin than the control. The present work showed that antisense OMT gene constructed in the poplar was not enough to reduce the overall content of Klason lignin, and suggested that the expression of transformation was confined to vessel walls.

The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis

  • Christopher J. Occhiuto;Jessica A. Moerland;Ana S. Leal;Kathleen A. Gallo;Karen T. Liby
    • Molecules and Cells
    • /
    • v.46 no.3
    • /
    • pp.176-186
    • /
    • 2023
  • The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.

Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs (전암성 폐병변 및 편평상피세포폐암 조직에서 CBP(cAMP-responsive Ele-ment Binding Protein) 전사 공동 활성인자의 면역조직화학적 발현양상의 비교)

  • Shin, Jong Wook;Kim, Jin Soo;Kim, Mi Kyung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.2
    • /
    • pp.165-172
    • /
    • 2007
  • Background: The pathogenesis of lung cancer includes the accumulation of multiple genetic abnormalities. The CREB-binding protein(CBP) is one of several transcriptional co-activators among various sequence-specific DNA-binding transcription factors. CBP is involved in a wide range of cellular activities, such as DNA repair, cell growth, differentiation, and apoptosis that are suspected of contributing to tumorigenesis. The goal of this study was to evaluate CBP expression in a series of human lung tissues containing normal epithelium, premalignant lesions(hyperplasia and dysplasia) and squamous cell carcinomas. Materials and Methods: Immunohistochemical staining was performed on formalin-fixed paraffin-embedded sections by use of a monoclonal anti-CBP antibody. CBP expression was compared in samples from 120 patients with premalignant and malignant histological types including 20 metaplastic specimens, 40 dysplastic specimens, and 60 squamous cell carcinomas in the lung. Results: CBP expression was seen in 35% (7/20) of the metaplastic specimens. 65% (26/40) of the dysplastic specimens, and 70% (42/60) of the squamous cell carcinomas (p<0.05). According to celluar atypism, CBP expression was 50% (10/20) of the low-grade dysplastic specimens and 80% (16/20) of the high-grade dysplastic specimens(p <0.01). By cellular differentiation, CBP expression was seen in 95% (19/20) of the well differentiated squamous cell carcinomas, 85% (17/20) of the moderately differentiated carcinomas and 30% (6/20) of the poorly differentiated lesions (p <0.05). Conclusion: These results suggest that CBP may have an important role in malignant transformation of precancerous lung lesions and may be a marker for malignancy.

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

  • Lee, Hye Seon;Kim, Min Wook;Jin, Kyeong Sik;Shin, Ho-Chul;Kim, Won Kon;Lee, Sang Chul;Kim, Seung Jun;Lee, Eun-Woo;Ku, Bonsu
    • Molecules and Cells
    • /
    • v.44 no.1
    • /
    • pp.26-37
    • /
    • 2021
  • Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.