Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0169

Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18  

Lee, Hye Seon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Min Wook (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jin, Kyeong Sik (Pohang Accelerator Laboratory, Pohang University of Science and Technology)
Shin, Ho-Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Won Kon (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Sang Chul (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Seung Jun (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Eun-Woo (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ku, Bonsu (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.
Keywords
CR3; E7; HPV18; human papillomavirus; PTPN21;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Avvakumov, N., Torchia, J., and Mymryk, J.S. (2003). Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 22, 3833-3841.   DOI
2 Berezutskaya, E. and Bagchi, S. (1997). The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272, 30135-30140.   DOI
3 Bodily, J.M., Mehta, K.P., and Laimins, L.A. (2011). Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 71, 1187-1195.   DOI
4 Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999). The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449-2458.   DOI
5 Carlucci, A., Gedressi, C., Lignitto, L., Nezi, L., Villa-Moruzzi, E., Avvedimento, E.V., Gottesman, M., Garbi, C., and Feliciello, A. (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J. Biol. Chem. 283, 10919-10929.   DOI
6 Carlucci, A., Porpora, M., Garbi, C., Galgani, M., Santoriello, M., Mascolo, M., di Lorenzo, D., Altieri, V., Quarto, M., Terracciano, L., et al. (2010). PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J. Biol. Chem. 285, 39260-39270.   DOI
7 Carra, G., Lingua, M.F., Maffeo, B., Taulli, R., and Morotti, A. (2020). P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell. Mol. Life Sci. 77, 4449-4458.   DOI
8 Cho, Y.C., Kim, B.R., and Cho, S. (2017). Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes. BMB Rep. 50, 584-589.   DOI
9 Hatterschide, J., Bohidar, A.E., Grace, M., Nulton, T.J., Kim, H.W., Windle, B., Morgan, I.M., Munger, K., and White, E.A. (2019). PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc. Natl. Acad. Sci. U. S. A. 116, 7033-7042.   DOI
10 Huang, J.M., Nagatomo, I., Suzuki, E., Mizuno, T., Kumagai, T., Berezov, A., Zhang, H., Karlan, B., Greene, M.I., and Wang, Q. (2013). YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32, 2220-2229.   DOI
11 Huh, K., Zhou, X., Hayakawa, H., Cho, J.Y., Libermann, T.A., Jin, J., Harper, J.W., and Munger, K. (2007). Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737-9747.   DOI
12 Jang, H., Park, S., Kim, J., Kim, J.H., Kim, S.Y., Cho, S., Park, S.G., Park, B.C., Kim, S., and Kim, J.H. (2020). The tumor suppressor, p53, negatively regulates non-canonical NF-κB signaling through miRNA-induced silencing of NF-κB-inducing kinase. Mol. Cells 43, 23-33.   DOI
13 Kim, K.W., Kim, J., Yun, Y.D., Ahn, H., Min, B., Kim, N.H., Rah, S., Kim, H.Y., Lee, C.S., Seo, I.D., et al. (2017). Small-angle X-ray scattering beamline BL4C SAXS at Pohang Light Source II. Biodesign 5, 24-29.
14 Kobayashi, K., Hisamatsu, K., Suzui, N., Hara, A., Tomita, H., and Miyazaki, T. (2018). A review of HPV-related head and neck cancer. J. Clin. Med. 7, 241.   DOI
15 Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859-865.   DOI
16 Liu, X., Clements, A., Zhao, K., and Marmorstein, R. (2006). Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J. Biol. Chem. 281, 578-586.   DOI
17 Michaloglou, C., Lehmann, W., Martin, T., Delaunay, C., Hueber, A., Barys, L., Niu, H., Billy, E., Wartmann, M., Ito, M., et al. (2013). The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8, e61916.   DOI
18 Liu, X., Yang, N., Figel, S.A., Wilson, K.E., Morrison, C.D., Gelman, I.H., and Zhang, J. (2013). PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273.   DOI
19 Martinez-Zapien, D., Ruiz, F.X., Poirson, J., Mitschler, A., Ramirez, J., Forster, A., Cousido-Siah, A., Masson, M., Vande Pol, S., Podjarny, A., et al. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541-545.   DOI
20 Mello, S.S., Valente, L.J., Raj, N., Seoane, J.A., Flowers, B.M., McClendon, J., Bieging-Rolett, K.T., Lee, J., Ivanochko, D., Kozak, M.M., et al. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell 32, 460-473.   DOI
21 Mittal, S. and Banks, L. (2017). Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res. 772, 23-35.   DOI
22 Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099-4105.   DOI
23 Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., and International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518-527.   DOI
24 Poirson, J., Biquand, E., Straub, M.L., Cassonnet, P., Nomine, Y., Jones, L., van der Werf, S., Trave, G., Zanier, K., Jacob, Y., et al. (2017). Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitinproteasome system. FEBS J. 284, 3171-3201.   DOI
25 Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Korbas, M., Meyer-Klaucke, W., Durst, M., et al. (2006). Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene 25, 5953-5959.   DOI
26 Pal, S., Bhattacharjee, A., Ali, A., Mandal, N.C., Mandal, S.C., and Pal, M. (2014). Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J. Inflamm. 11, 23.   DOI
27 Plani-Lam, J.H., Chow, T.C., Fan, Y.H., Garcia-Bloj, B., Cheng, L., Jin, D.Y., Hancock, W., Fanayan, S., Ingley, E., and Song, Y.Q. (2016). High expression of PTPN21 in B-cell non-Hodgkin's gastric lymphoma, a positive mediator of STAT5 activity. Blood Cancer J. 6, e388.   DOI
28 Roda-Navarro, P. and Bastiaens, P.I. (2014). Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One 9, e103203.   DOI
29 Rozenblatt-Rosen, O., Deo, R.C., Padi, M., Adelmant, G., Calderwood, M.A., Rolland, T., Grace, M., Dricot, A., Askenazi, M., Tavares, M., et al. (2012). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491-495.   DOI
30 Schneider, G., Henrich, A., Greiner, G., Wolf, V., Lovas, A., Wieczorek, M., Wagner, T., Reichardt, S., von Werder, A., Schmid, R.M., et al. (2010). Cross talk between stimulated NF-κB and the tumor suppressor p53. Oncogene 29, 2795-2806.   DOI
31 Szalmas, A., Tomaic, V., Basukala, O., Massimi, P., Mittal, S., Konya, J., and Banks, L. (2017). The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7. J. Virol. 91, e00057-17.
32 Semenyuk, A.V. and Svergun, D.I. (1991). GNOM - a program package for small-angle scattering data processing. J. Appl. Crystallogr. 24, 537-540.   DOI
33 Svergun, D., Barberato, C., and Koch, M.H.J. (1995). CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768-773.   DOI
34 Svergun, D.I., Petoukhov, M.V., and Koch, M.H. (2001). Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946-2953.   DOI
35 Todorovic, B., Hung, K., Massimi, P., Avvakumov, N., Dick, F.A., Shaw, G.S., Banks, L., and Mymryk, J.S. (2012). Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor. J. Virol. 86, 13313-13323.   DOI
36 Tommasino, M. (2014). The human papillomavirus family and its role in carcinogenesis. Semin. Cancer Biol. 26, 13-21.   DOI
37 Tumban, E. (2019). A current update on human papillomavirus-associated head and neck cancers. Viruses 11, 922.   DOI
38 Wang, X., Huang, X., and Zhang, Y. (2018). Involvement of human papillomaviruses in cervical cancer. Front. Microbiol. 9, 2896.   DOI
39 Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-79.   DOI
40 White, E.A., Munger, K., and Howley, P.M. (2016). High-risk human papillomavirus E7 proteins target PTPN14 for degradation. mBio 7, e01530-16.
41 Kozin, M.B. and Svergun, D.I. (2001). Automated matching of high-and low-resolution structural models. J. Appl. Crystallogr. 34, 33-41.   DOI
42 White, E.A., Sowa, M.E., Tan, M.J., Jeudy, S., Hayes, S.D., Santha, S., Munger, K., Harper, J.W., and Howley, P.M. (2012). Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc. Natl. Acad. Sci. U. S. A. 109, E260-E267.   DOI
43 Wilson, K.E., Li, Y.W., Yang, N., Shen, H., Orillion, A.R., and Zhang, J. (2014). PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J. Biol. Chem. 289, 23693-23700.   DOI
44 Wu, Z.Z., Lu, H.P., and Chao, C.C. (2010). Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem. Pharmacol. 80, 262-276.   DOI
45 Yun, H.Y., Kim, M.W., Lee, H.S., Kim, W., Shin, J.H., Kim, H., Shin, H.C., Park, H., Oh, B.H., Kim, W.K., et al. (2019). Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol. 17, e3000367.   DOI