• Title/Summary/Keyword: Cellular systems

Search Result 1,304, Processing Time 0.03 seconds

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.

Gated-CDMA: A Downlink Transmission Method for Next Generation Mobile Cellular Communication Systems (Gated-CDMA: 차세대 이동통신 시스템을 위한 하향링크 전송방법)

  • 임민중
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.11
    • /
    • pp.73-79
    • /
    • 2004
  • While CDMA systems are proven to be excellent solutions for cellular communications, they suffer from severe multi-path interferences and are unable to support high-data-rate transmissions over frequency-selective fading channels. This paper introduces a novel downlink transmission method for next generation mobile communication systems. The proposed method allows frequency-domain equalization at the receiver while maintaining the compatibility with the 3rdgeneration CDMA systems.

A traffic and interference adaptive DCA algorithm with rearrangement in microcellular systems

  • Kim, Seong-Lyun;Han, Youngnam
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.724-728
    • /
    • 1995
  • A new dynamic channel assignment (DCA) algorithm with rearrangement for cellular mobile communication systems is suggested. Our DCA algorithm is both traffic and interference adaptive, which is based on the mathematical formulation of the maximum packing under a realistic propagation model. In developing the algorithm, we adopt the Lagrangean relaxation technique that has been successfully used in the area of mathematical programming. Computational experiments of the algorithm reveal quite encouraging results. Although our algorithm primarily focuses on microcellular systems, it can be effectively applied to conventional cellular systems under highly nonuniform traffic distributions and interference conditions.

  • PDF

Greedy Heuristic Resource Allocation Algorithm for Device-to-Device Aided Cellular Systems with System Level Simulations

  • Wang, Xianxian;Lv, Shaobo;Wang, Xing;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1415-1435
    • /
    • 2018
  • Resource allocation in device-to-device (D2D) aided cellular systems, in which the proximity users are allowed to communicate directly with each other without relying on the intervention of base stations (BSs), is investigated in this paper. A new uplink resource allocation policy is proposed by exploiting the relationship between D2D-access probability and channel gain among variant devices, such as cellular user equipments (CUEs), D2D user equipments (DUEs) and BSs, etc., under the constraints of their minimum signal to interference-plus-noise ratio (SINR) requirements. Furthermore, the proposed resource-allocation problem can be formulated as the cost function of "maximizing the number of simultaneously activated D2D pairs subject to the SINR constraints at both CUEs and DUEs". Numerical results relying on system-level simulations show that the proposed scheme is capable of substantially improving both the D2D-access probability and the network throughput without sacrificing the performance of conventional CUEs.

A Mathematical Model for Converting Conveyor Assembly Line to Cellular Manufacturing

  • Kaku, Ikou;Gong, Jun;Tang, Jiafu;Yin, Yong
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • This paper proposes a mathematical model for converting conveyor assembly line to cellular manufacturing in complex production environments. Complex production environments refer to the situations with multi-products, variant demand, different batch sizes and the worker abilities varying with work stations and products respectively. The model proposed in this paper aims to determine (1) how many cells should be formatted; (2) how many workers should be assigned in each cell; (3) and how many workers should be rested in shortened conveyor line when a conveyor assembly line should be converted, in order to optimize system performances which are defined as the total throughput time and total labor power. We refer the model to a new production system. Such model can be used as an evaluation tool in the cases of (i) when a company wants to change its production system (usually a belt conveyor line) to a new one (including cell manufacturing); (ii) when a company wants to evaluate the performance of its converted system. Simulation experiments based on the data collected from the previous documents are used to estimate the marginal impact that each factor change has had on the estimated performance improvement resulting from the conversion.

Performance Analysis of RRA_CDMA MAC Protocol In the Cellular Parket CDMA Systems (셀룰러 패킷 CDMA 시스템에서 RRA_CDMA MAC 프로토콜의 성능 분석)

  • 임인택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1141-1148
    • /
    • 1999
  • In this paper, an RRA_CDMA protocol is proposed for the integrated voice and data services in the cellular packet CDMA systems. The proposed protocol employs the RRA scheme. In the cellular CDMA systems, the backward logical channels are composed of time slots with multiple spreading codes per slot based on WB-TD-CDMA concept. When a voice terminal begins a talkspurt, it reserves one of the available spreading codes in the next slot and uses the reserved channel exclusively untill it ends the talkspurt. On th other hand, whenever a data terminal generates a packet, it selects an avaliable spreading code and transmits its packet. Throughout the results, it is shown that the system capacity increases in proportion to the number of spreading codes.

  • PDF

Effect of Cooperative and Selection Relaying Schemes on Multiuser Diversity in Downlink Cellular Systems with Relays

  • Kang, Min-Suk;Jung, Bang-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • In this paper, we investigate the effect of cooperative and selection relaying schemes on multiuser diversity in downlink cellular systems with fixed relay stations (RSs). Each mobile station (MS) is either directly connected to a base station (BS) and/or connected to a relay station. We first derive closed-form solutions or upper-bound of the ergodic and outage capacities of four different downlink data relaying schemes: A direct scheme, a relay scheme, a selection scheme, and a cooperative scheme. The selection scheme selects the best access link between the BS and an MS. For all schemes, the capacity of the BS-RS link is assumed to be always larger than that of RS-MS link. Half-duplex channel use and repetition based relaying schemes are assumed for relaying operations. We also analyze the system capacity in a multiuser diversity environment in which a maximum signal-to-noise ratio (SNR) scheduler is used at a base station. The result shows that the selection scheme outperforms the other three schemes in terms of link ergodic capacity, link outage capacity, and system ergodic capacity. Furthermore, our results show that cooperative and selection diversity techniques limit the performance gain that could have been achieved by the multiuser diversity technique.

Frequency and Subcarrier Reuse Partitioning for FH-OFDMA Cellular Systems

  • Lee, Yeonwoo;Kim, Kyung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.601-609
    • /
    • 2013
  • One of the most serious factors constraining the next generation cellular mobile consumer communication systems will be the severe co-channel interference experienced at the cell edge. Such a capacity-degrading impairment combined with the limited available spectrum resource makes it essential to develop more spectrally efficient solutions to enhance the system performance and enrich the mobile user's application services. This paper proposes a unique hybrid method of frequency hopping (FH) and subcarrier-reuse-partitioning that can maximize the system capacity by efficiently utilizing the available spectrum while at the same time reduce the co-channel interference effect. The main feature of the proposed method is that it applies an optimal combination of different frequency reuse factors (FRF) and FH-subcarrier allocation patterns into the partitioned cell regions. From the simulation results, it is shown that the proposed method can achieve the optimum number of subcarrier subsets according to the frequency-reuse distance and results in better performance than the fixed FRF methods, for a given partitioning arrangement. The results are presented in the context of both blocking probability and BER performances. It will also be shown how the proposed scheme is well suited to FH-OFDMA based cellular systems aiming at low co-channel interference performance and optimized number of subcarriers.

A New Algorithm for Frequency Channel Assignment in High Capacity Cellular Mobile Communication Systems (대용량 셀룰러 이동통신 시스팀에 있어 새로운 채널할당 알고리듬)

  • Chung, Seon-Jong;Park, Se-Kyoung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 1989
  • A new algorithm for frequency channel assignment in high capacity cellular mobile communication systems is proposed. The algorithm is the advanced type of the fixed channel assignment scheme. It enables calls having all nominal channels busy to be served by adjacent cells have idle channels. Thus, it considerably reduces the blocking probability compared with the fixed channel assignment. Simulation has been performed for a 49-cell system having uniform traffic density hexagonal array as a representative system lay out. Results showed that new algorithm is better than the fixed channel assignment scheme in high capacity cellular mobile communication systems.

  • PDF