• Title/Summary/Keyword: Cellular proteins

Search Result 1,342, Processing Time 0.029 seconds

Post-Translational Modification of Proteins in Toxicological Research: Focus on Lysine Acylation

  • Lee, Sangkyu
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.

Condensation of DNA by a Histone-like Protein in Escherichia coli

  • Kim, So-Youn;Hwang, Deog-Su
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 1995
  • In E. coli, chromosomal DNA associated with proteins is condensed into an organized structure known as nucleoid. Using a nitrocellulose filter binding assay to identify proteins forming nucleoid, a 21 kDa protein was purified from E. coli. The molecular weight of the purified protein was 21 kDa on SDS-polyactylamide gel electrophoresis and 24 kDa on gel permeation chromatography. A molecular weight of 21 kDa on SDS-polyacrylamide gel electrophoresis is unique among known proteins which are believed to be involved in the formation of nucleoid in E. coli. The 21 kDa protein nonspecifically binds to both double-stranded and single-stranded DNA. Sedimentation in a sucrose gradient revealed that the protein induced significant condensation of both supercoiled plasmid DNA and linear bacteriophage $\lambda$ DNA On the basis of quantitative Western-blot analysis, approximately 40,000 molecules of the protein were estimated to exist in an E. coli. The biochemical properties and cellular abundance of the 21 kDa protein suggest that this protein participates in the formation of nucleoid in E. coli.

  • PDF

Regulation of a Novel Guanine Nucleotide Binding Protein Tissue Transglutaminase ($G{\alpha}_n$).

  • Im, Mie-Jae
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Tissue transglutaminase (TGII, $G{\alpha}h$) belongs to a family of enzymes which catalyze post-translational modification of proteins by forming isopeptides via $Ca^{2+}$-dependent reaction. Although TGII-mediated formation of isopeptides has been implicated to play a role in a variety of cellular processes, the physiological function of TGII remains unclear. In addition to this Tease activity, TGII is a guanosine triphosphatase (GTPase) which binds and hydrolyzes GTP It is now well recognized that the GTPase action of TGII regulates a receptor-mediated transmembrane signaling, functioning as a signal transducer of the receptor. This TGII function signifies that TGII is a new class of GTP-binding regulatory protein (G-protein) that differs from "Classical" heterotrimeric G-proteins. Regulation of enzyme is an important biological process for maintaining cell integrity. This review summarizes the recent development in regulation of TGII that may help for the better understanding of this unique enzyme. Since activation and inactivation of GTPase of TGII are similar to the heterotrimeric G-proteins, the regulation of heterotrimeric G-protein in the transmembrane signaling is also discussed.

  • PDF

Antibodies against Nitric Oxide Damaged Poly L-Tyrosine and 3-Nitrotyrosine Levels in Systemic Lupus Erythematosus

  • Khan, Fozia;Ali, Rashid
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.189-196
    • /
    • 2006
  • Alterations in the amino acid structure or sequence can generate neo-epitopes from self-proteins causing autoaggressive immune attack. Reactive nitrogen species are an important factor that induces post-translational modification of proteins by cellular reduction and oxidation mechanism; cysteinyl-nitrosylation or tyrosine nitration leading to potentially pathogenic pathways. It was thought of interest to investigate the immunogenicity of nitrated poly L-tyrosine vis-$\`{a}$-vis its possible role in the induction of antibodies in systemic lupus erythematosus (SLE). Commercially available poly L-tyrosine was exposed to nitrating species and the damage was monitored by UV spectroscopy and alkaline gel electrophoresis. The results indicated the formation of 3-nitrotyrosine. Nitrated poly L-tyrosine induced higher titre antibodies as compared to the native form. Nitrated poly L-tyrosine was recognized by the autoantibodies present in the sera of patients suffering from SLE by enzyme immunoassays and band shift assay. The possible role of nitrated self-proteins has been discussed in the production of circulating anti-DNA antibodies in SLE.

NMR characterization of SRG3 SWIRM Domain Mutant Proteins.

  • Koh, Woo-Hyoung;Kim, Min-Tae;Moon, Sun-Jin;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.56-63
    • /
    • 2009
  • SWIRM domain, a core domain of SRG3 is well conserved in SW13, RSC8, and MOIRA family proteins. To understand structural basis for cellular functions of the SWIRM domain, we have initiated biochemical and structural studies on SWIRM domain and mutants using gelfiltration chromatography, circular dichroism and NMR spectroscopy. The structural properties of the mutant SWIRM domains (K34A and M75A) have been characterized, showing that the structures of both wild-type and mutant proteins are a-helical conformation. The data conclude that mutations at interaction sites of its binding partner protein do not affect its secondary and tertiary structure.

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Dopamine Receptor Interacting Proteins (DRIPs) of Dopamine D1-like Receptors in the Central Nervous System

  • Wang, Min;Lee, Frank J.S.;Liu, Fang
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.149-157
    • /
    • 2008
  • Dopamine is a major neurotransmitter in the mammalian central nervous system (CNS) that regulates neuroendocrine functions, locomotor activity, cognition and emotion. The dopamine system has been extensively studied because dysfunction of this system is linked to various pathological conditions including Parkinson's disease, schizophrenia, Tourette's syndrome, and drug addiction. Accordingly, intense efforts to delineate the full complement of signaling pathways mediated by individual receptor subtypes have been pursued. Dopamine D1-like receptors are of particular interest because they are the most abundant dopamine receptors in CNS. Recent work suggests that dopamine signaling could be regulated via dopamine receptor interacting proteins (DRIPs). Unraveling these DRIPs involved in the dopamine system may provide a better understanding of the mechanisms underlying CNS disorders related to dopamine system dysfunction and may help identify novel therapeutic targets.

Evolution and Design Principles of the Diverse Chloroplast Transit Peptides

  • Lee, Dong Wook;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • Chloroplasts are present in organisms belonging to the kingdom Plantae. These organelles are thought to have originated from photosynthetic cyanobacteria through endosymbiosis. During endosymbiosis, most cyanobacterial genes were transferred to the host nucleus. Therefore, most chloroplast proteins became encoded in the nuclear genome and must return to the chloroplast after translation. The N-terminal cleavable transit peptide (TP) is necessary and sufficient for the import of nucleus-encoded interior chloroplast proteins. Over the past decade, extensive research on the TP has revealed many important characteristic features of TPs. These studies have also shed light on the question of how the many diverse TPs could have evolved to target specific proteins to the chloroplast. In this review, we summarize the characteristic features of TPs. We also highlight recent advances in our understanding of TP evolution and provide future perspectives about this important research area.

Structures of proteases for ubiqutin and ubiquitin-like modifiers

  • Ha, Byung-Hak;Kim, Eunice Eun-Kyeong
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.435-443
    • /
    • 2008
  • Post-translational modifiers can alter the function of proteins in many different ways. The conjugation of ubiquitin (Ub) and ubiqutin-like modifiers (Ubls) to proteins has been shown to be especially crucial in regulating a variety of cellular processes including the cell cycle, growth control, quality control, localization and many more. It is a highly dynamic process and involves a number of enzymes called E1, E2 and E3. Ub and Ubls are removed from the target proteins by deubiquitinating enzymes (DUBs) or Ubl-specific proteases (ULPs), thereby deconjugation can act as an additional level of control over the ubiquitin-conjugation system. In addition, DUBs and ULPs are responsible for activating Ub and Ubls from their inactive corresponding precursor forms. Here we review recent progress in molecular details of these deconjugating enzymes of Ubls.