Browse > Article
http://dx.doi.org/10.5487/TR.2013.29.2.081

Post-Translational Modification of Proteins in Toxicological Research: Focus on Lysine Acylation  

Lee, Sangkyu (College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Publication Information
Toxicological Research / v.29, no.2, 2013 , pp. 81-86 More about this Journal
Abstract
Toxicoproteomics integrates the proteomic knowledge into toxicology by enabling protein quantification in biofluids and tissues, thus taking toxicological research to the next level. Post-translational modification (PTM) alters the three-dimensional (3D) structure of proteins by covalently binding small molecules to them and therefore represents a major protein function diversification mechanism. Because of the crucial roles PTM plays in biological systems, the identification of novel PTMs and study of the role of PTMs are gaining much attention in proteomics research. Of the 300 known PTMs, protein acylation, including lysine formylation, acetylation, propionylation, butyrylation, malonylation, succinylation, and crotonylation, regulates the crucial functions of many eukaryotic proteins involved in cellular metabolism, cell cycle, aging, growth, angiogenesis, and cancer. Here, I reviewed recent studies regarding novel types of lysine acylation, their biological functions, and their applicationsin toxicoproteomics research.
Keywords
Lysine acylation; Post-translational modification; Toxicoproteomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Es-Haghi, A., Shariatizi, S., Ebrahim-Habibi, A. and Nemat- Gorgani, M. (2012) Amyloid fibrillation in native and chemically- modified forms of carbonic anhydrase II: role of surface hydrophobicity. Biochim. Biophys. Acta, 1824, 468-477.   DOI   ScienceOn
2 Peng, C., Lu, Z., Xie, Z., Cheng, Z., Chen, Y., Tan, M., Luo, H., Zhang, Y., He, W., Yang, K., Zwaans, B.M., Tishkoff, D., Ho, L., Lombard, D., He, T.C., Dai, J., Verdin, E., Ye, Y. and Zhao, Y. (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics, 10, M111.012658.   DOI
3 Xie, Z., Dai, J., Dai, L., Tan, M., Cheng, Z., Wu, Y., Boeke, J.D. and Zhao, Y. (2012) Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics, 11, 100-107.   DOI
4 Newman, J.C., He, W. and Verdin, E. (2012) Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J. Biol. Chem., 287, 42436-42443.   DOI
5 Saggerson, D. (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr., 28, 253-272.   DOI   ScienceOn
6 Montellier, E., Rousseaux, S., Zhao, Y. and Khochbin, S. (2012) Histone crotonylation specifically marks the haploid male germ cell gene expression program: post-meiotic malespecific gene expression. BioEssays, 34, 187-193.   DOI   ScienceOn
7 Tan, M., Luo, H., Lee, S., Jin, F., Yang, J.S., Montellier, E., Buchou, T., Cheng, Z., Rousseaux, S., Rajagopal, N., Lu, Z., Ye, Z., Zhu, Q., Wysocka, J., Ye, Y., Khochbin, S., Ren, B. and Zhao, Y. (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 146, 1016-1028.   DOI   ScienceOn
8 George, J., Singh, R., Mahmood, Z. and Shukla, Y. (2010) Toxicoproteomics: new paradigms in toxicology research. Toxicol. Mech. Methods, 20, 415-423.   DOI   ScienceOn
9 Wetmore, B.A. and Merrick, B.A. (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol. Pathol., 32, 619-642.   DOI   ScienceOn
10 Wilkins, M.R., Gasteiger, E., Gooley, A.A., Herbert, B.R., Molloy, M.P., Binz, P.A., Ou, K., Sanchez, J.C., Bairoch, A., Williams, K.L. and Hochstrasser, D.F. (1999) High-throughput mass spectrometric discovery of protein post-translational modifications. J. Mol. Biol., 289, 645-657.   DOI   ScienceOn
11 Oses-Prieto, J.A., Zhang, X. and Burlingame, A.L. (2007) Formation of epsilon-formyllysine on silver-stained proteins: implications for assignment of isobaric dimethylation sites by tandem mass spectrometry. Mol. Cell. Proteomics, 6, 181-192.   DOI
12 Wisniewski, J.R., Zougman, A. and Mann, M. (2008) Nepsilon- formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function. Nucleic Acids Res., 36, 570-577.   DOI
13 Cai, H. and Guengerich, F.P. (2000) Acylation of protein lysines by trichloroethylene oxide. Chem. Res. Toxicol., 13, 327-335.   DOI   ScienceOn
14 Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walther, T.C., Olsen, J.V. and Mann, M. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 325, 834-840.   DOI   ScienceOn
15 Lin, H., Su, X. and He, B. (2012) Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol., 7, 947-960.   DOI   ScienceOn
16 Lu, J.Y., Lin, Y.Y., Sheu, J.C., Wu, J.T., Lee, F.J., Chen, Y., Lin, M.I., Chiang, F.T., Tai, T.Y., Berger, S.L., Zhao, Y., Tsai, K.S., Zhu, H., Chuang, L.M. and Boeke, J.D. (2011a) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell, 146, 969-979.   DOI   ScienceOn
17 Chuang, C., Lin, S.H., Huang, F., Pan, J., Josic, D. and Yu- Lee, L.Y. (2010) Acetylation of RNA processing proteins and cell cycle proteins in mitosis. J. Proteome Res., 9, 4554-4564.   DOI   ScienceOn
18 Carafa, V., Nebbioso, A. and Altucci, L. (2012) Sirtuins and disease: the road ahead. Front. Pharmacol., 3, 4.
19 Jiang, T., Zhou, X., Taghizadeh, K., Dong, M. and Dedon, P.C. (2007) N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage. Proc. Natl. Acad. Sci. U.S.A., 104, 60-65.   DOI   ScienceOn
20 Beltrao, P., Albanese, V., Kenner, L.R., Swaney, D.L., Burlingame, A., Villen, J., Lim, W.A., Fraser, J.S., Frydman, J. and Krogan, N.J. (2012) Systematic functional prioritization of protein posttranslational modifications. Cell, 150, 413-425.   DOI   ScienceOn
21 Eilstein, J., Gimenez-Arnau, E., Duche, D., Rousset, F. and Lepoittevin, J.P. (2007) Mechanistic studies on the lysineinduced N-formylation of 2,5-dimethyl-p-benzoquinonediimine. Chem. Res. Toxicol., 20, 1155-1161.   DOI   ScienceOn
22 Zhang, K., Chen, Y., Zhang, Z. and Zhao, Y. (2009) Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J. Proteome Res., 8, 900-906.   DOI   ScienceOn
23 Cheng, Z., Tang, Y., Chen, Y., Kim, S., Liu, H., Li, S.S., Gu, W. and Zhao, Y. (2009) Molecular characterization of propionyllysines in non-histone proteins. Mol. Cell. Proteomics, 8, 45-52.   DOI   ScienceOn
24 Liu, B., Lin, Y., Darwanto, A., Song, X., Xu, G. and Zhang, K. (2009) Identification and characterization of propionylation at histone H3 lysine 23 in mammalian cells. J. Biol. Chem., 284, 32288-32295.   DOI   ScienceOn
25 Shimazu, T., Hirschey, M.D., Hua, L., Dittenhafer-Reed, K.E., Schwer, B., Lombard, D.B., Li, Y., Bunkenborg, J., Alt, F.W., Denu, J.M., Jacobson, M.P. and Verdin, E. (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab., 12, 654-661.   DOI   ScienceOn
26 Shepard, B.D. and Tuma, P.L. (2009) Alcohol-induced protein hyperacetylation: mechanisms and consequences. World J. Gastroenterol., 15, 1219-1230.   DOI
27 Fritz, K.S., Galligan, J.J., Hirschey, M.D., Verdin, E. and Petersen, D.R. (2012) Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J. Proteome Res., 11, 1633-1643.   DOI   ScienceOn
28 You, M., Liang, X., Ajmo, J.M. and Ness, G.C. (2008) Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am. J. Physiol. Gastrointest. Liver Physiol., 294, G892-G898.   DOI   ScienceOn
29 Qiu, X., Brown, K., Hirschey, M.D., Verdin, E. and Chen, D. (2010) Calorie restriction reduces oxidative stress by SIRT3- mediated SOD2 activation. Cell Metab., 12, 662-667.   DOI   ScienceOn
30 Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R., Stevens, R.D., Li, Y., Saha, A.K., Ruderman, N.B., Bain, J.R., Newgard, C.B., Farese, R.V. Jr., Alt, F.W., Kahn, C.R. and Verdin, E. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 464, 121-125.   DOI   ScienceOn
31 Kendrick, A.A., Choudhury, M., Rahman, S.M., McCurdy, C.E., Friederich, M., Van Hove, J.L., Watson, P.A., Birdsey, N., Bao, J., Gius, D., Sack, M.N., Jing, E., Kahn, C.R., Friedman, J.E. and Jonscher, K.R. (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J., 433, 505-514.   DOI   ScienceOn
32 Jo, W.J., Ren, X., Chu, F., Aleshin, M., Wintz, H., Burlingame, A., Smith, M.T., Vulpe, C.D. and Zhang, L. (2009) Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol. Appl. Pharmacol., 241, 294-302.   DOI   ScienceOn
33 Cronican, A.A., Fitz, N.F., Carter, A., Saleem, M., Shiva, S., Barchowsky, A., Koldamova, R., Schug, J. and Lefterov, I. (2013) Genome-wide alteration of histone H3K9 acetylation pattern in mouse offspring prenatally exposed to arsenic. PLoS One, 8, e53478.   DOI
34 Wang, Q., Zhang, Y., Yang, C., Xiong, H., Lin, Y., Yao, J., Li, H., Xie, L., Zhao, W., Yao, Y., Ning, Z.B., Zeng, R., Xiong, Y., Guan, K.L., Zhao, S. and Zhao, G.P. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 327, 1004-1007.   DOI   ScienceOn
35 Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S.M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., Lei, Q., Xiong, Y. and Guan, K.L. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science, 327, 1000-1004.   DOI   ScienceOn
36 Chen, Y., Sprung, R., Tang, Y., Ball, H., Sangras, B., Kim, S.C., Falck, J.R., Peng, J., Gu, W. and Zhao, Y. (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics, 6, 812-819.   DOI   ScienceOn
37 Sebastian, C., Zwaans, B.M., Silberman, D.M., Gymrek, M., Goren, A., Zhong, L., Ram, O., Truelove, J., Guimaraes, A.R., Toiber, D., Cosentino, C., Greenson, J.K., MacDonald, A.I., McGlynn, L., Maxwell, F., Edwards, J., Giacosa, S., Guccione, E., Weissleder, R., Bernstein, B.E., Regev, A., Shiels, P.G., Lombard, D.B. and Mostoslavsky, R. (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell, 151, 1185-1199.   DOI   ScienceOn
38 Lu, Z., Bourdi, M., Li, J.H., Aponte, A.M., Chen, Y., Lombard, D.B., Gucek, M., Pohl, L.R. and Sack, M.N. (2011b) SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO Rep., 12, 840-846   DOI
39 Peserico, A. and Simone, C. (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J. Biomed. Biotechnol., 2011, 371832.
40 Yang, X.J. and Seto, E. (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell., 31, 449-461.   DOI   ScienceOn
41 Lu, Z., Cheng, Z., Zhao, Y. and Volchenboum, S.L. (2011c) Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation. PLoS One, 6, e28228.   DOI
42 Walsh, C.T., Garneau-Tsodikova, S. and Gatto, G.J. Jr. (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl., 44, 7342-7372.   DOI   ScienceOn
43 Mann, M. and Jensen, O.N. (2003) Proteomic analysis of post-translational modifications. Nat. Biotechnol., 21, 255-261.   DOI   ScienceOn
44 Cantin, G.T. and Yates, J.R. 3rd. (2004) Strategies for shotgun identification of post-translational modifications by mass spectrometry. J. Chromatogr. A, 1053, 7-14.   DOI   ScienceOn
45 Keck, J.M., Jones, M.H., Wong, C.C., Binkley, J., Chen, D., Jaspersen, S.L., Holinger, E.P., Xu, T., Niepel, M., Rout, M.P., Vogel, J., Sidow, A., Yates, J.R. 3rd. and Winey, M. (2011) A cell cycle phosphoproteome of the yeast centrosome. Science, 332, 1557-1561.   DOI   ScienceOn
46 Hunter, T. (2000) Signaling--2000 and beyond. Cell, 100, 113-127.   DOI   ScienceOn
47 Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., Nigg, E.A., Brunak, S. and Mann, M. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signaling, 3, ra3.   DOI   ScienceOn
48 Norris, K.L., Lee, J.Y. and Yao, T.P. (2009) Acetylation goes global: the emergence of acetylation biology. Sci. Signaling, 2, pe76.   DOI   ScienceOn
49 Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N.V., White, M., Yang, X.J. and Zhao, Y. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell., 23, 607-618.   DOI   ScienceOn