• Title/Summary/Keyword: Cellular metabolism

Search Result 588, Processing Time 0.025 seconds

High Productivity of t-PA in CHO Cells Using Hypoxia Response Element

  • Bae Gun-Won;Jeong Dae-Won;Kim Hong-Jin;Lee Gyun-Min;Park Hong-Woo;Choe Tae-Boo;Kang Seong-Man;Kim Ick-Young;Kim Ik-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.695-703
    • /
    • 2006
  • The dissolved oxygen level of any cell culture environment has a critical effect on cellular metabolism. Specifically, hypoxia condition decreases cell viability and recombinant protein productivity. In this work, to develop CHO cells producing recombinant protein with high productivity, mammalian expression vectors containing a human tissue-type plasminogen activator (t-PA) gene with hypoxia response element (HRE) were constructed and stably transfected into CHO cells. CHO/2HRE-t-PA cells produced 2-folds higher recombinant t-PA production than CHO/t-PA cells in a $Ba^{2+}-alginate$ immobilized culture, and 16.8-folds in a repeated batch culture. In a non-aerated batch culture of suspension-adapted cells, t-PA productivity of CHO/2HRE/t-PA cells was 4.2-folds higher than that of CHO/t-PA cells. Our results indicate that HRE is a useful tool for the enhancement of protein productivity in mammalian cell cultures.

Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee;Lee, Dae-Hee;Park, Yong-Cheol;Lee, Mi-Gi;Kim, Dae-Ok;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.248-254
    • /
    • 2008
  • Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.

Estrogen deprivation and excess energy supply accelerate 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in C3H/HeN mice

  • Kim, Jin;Lee, Yoon Hee;Yoon Park, Jung Han;Sung, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.628-636
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Obesity is a risk factor of breast cancer in postmenopausal women. Estrogen deprivation has been suggested to cause alteration of lipid metabolism thereby creating a cellular microenvironment favoring tumor growth. The aim of this study is to investigate the effects of estrogen depletion in combination with excess energy supply on breast tumor development. MATERIALS/METHODS: Ovariectomized (OVX) or sham-operated C3H/HeN mice at 4 wks were provided with either a normal diet or a high-fat diet (HD) for 16 weeks. Breast tumors were induced by administration of 7,12-dimethylbenz(a)anthracene once a week for six consecutive weeks. RESULTS: Study results showed higher serum concentrations of free fatty acids and insulin in the OVX+HD group compared to other groups. The average tumor volume was significantly larger in OVX+HD animals than in other groups. Expressions of mammary tumor insulin receptor and mammalian target of rapamycin proteins as well as the ratio of pAKT/AKT were significantly increased, while pAMPK/AMPK was decreased in OVX+HD animals compared to the sham-operated groups. Higher relative expression of liver fatty acid synthase mRNA was observed in OVX+HD mice compared with other groups. CONCLUSIONS: These results suggest that excess energy supply affects the accelerated mammary tumor growth in estrogen deprived mice.

Effects of Resveratrol on the Pharmacokinetics of Nifedipine in Rats (레스베라트롤이 니페디핀의 약물동태에 미치는 영향)

  • Choi, Byung-Chul;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.54 no.4
    • /
    • pp.252-257
    • /
    • 2010
  • The aim of this study was to investigate the effect of resveratrol on the pharmacokinetics of nifedipine in rats. The pharmacokinetic parameters of nifedipine were measured after the oral administration of nifenipine (6 mg/kg) in the presence or absence of resveratrol (0.5, 2.5 and 10 mg/kg, respectively). The effect of resveratrol on the P-glycoprotein (Pgp), CYP 3A4 activity was also evaluated. Resveratrol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 0.94 ${\mu}M$. In addition, resveratrol significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared to the control groups, the presence of 2.5 mg/kg and 10 mg/kg of resveratrol significantly (p<0.05, p<0.01) increased the area under the plasma concentrationtime curve (AUC) of nifedipine by 49~75%, and the peak concentration ($C_{max}$) of nifedipine by 48~66%. The absolute bioavailability (AB%) of nifedipine was significantly (p<0.05) increased by 22.9-34.8% compared to the control (19.8%). The terminal half-life ($T_{1/2}$) of nifedipine was significantly (p<0.05) increased compared to the control. While there was no significant change in the time to reach the peak plasma concentration ($T_{max}$) of nifedipine in the presence of resveratrol. It might be suggested that resveratrol altered disposition of nifedipine by inhibition of both the CYP3A and P-glycoprotein efflux pump in the small intestine of rats. In conclusion, the presence of resveratrol significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of resveratrol or resveratrol-containing dietary supplenment with nifedipine should require close monitoring for potential drug interation.

Cellular Distribution and Metabolism of Ginsenosides in Rat Liver (쥐 간에서의 Ginsenoside의 세포내 분포와 대사)

  • 윤수희;이희봉
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 1993
  • 0.5 mg of natural ginsenoside mixture and 0.8 $\mu$Ci of synthesized 14C-ginsenosides were administered orally to a rat and killed at one hour after the ginsenoside administration and the liver was fractionated into nuclear fraction, mitrochondria microsomes and cytosol fraction. Radioactivity distribu lion in subcellular fractions of the liver showed that 32o1c of total radioactivity absorbed in the liver was in cytosol fraction but a significant portion of the radioactivity was also found in mitochondria (26.6%) and microsomal fraction (18.l%). 5.8% of the total radioactivity was recovered from the nuclear fraction as well. This suggested that ginsenosides might be distributed into all subcellular fractions. Activities of mitochondrial aldehyde dehydrogenase, lactate dehydrogenase and malate dehydrogenase of the liver of rat at two hours after the ginsenoside administraion were found appreciably stimulated, suggesting that the ginsenoside concentration in the liver might be around 10-5%, since optimum concentrations for most enzyme catalyzed reactions in vitro were known to be 10-6% 10-4%. A significant portion of the radioactivity recovered from subcellular fractions of the liver was found in protein fractions, suggesting that proteins might interact with ginsenosides. Examination of protein-ginsenoside interation by gel filtration, equilibrium dialysis and amonium sulfate precipitation technique suggesting that proteins and ginsenosides do not bound covalently but weakl\ulcorner combined. When purified ginsenoside Rbl and Rgl were incubated with rat liver cytosolic enzymes for 20 min, the above ginsenosides were hydrolyzed quickly, suggesting that ginsenosides might be rapidly hydrolyzed and metabolized in the liver. It was also observed in vitro that the ginsenosides such as Rbl and Rgl were easily hydrolyzed by rat liver cytosol preparation suggesting that absorbed ginsenosides might be quickly hydrolyzed and metabolized in the liver.

  • PDF

Microarray Study of Genes Differentially Modulated in Response to Nitric Oxide in Macrophages

  • Nan, Xuehua;Maeng, Oky;Shin, Hyo-Jung;An, Hyun-Jung;Yeom, Young-Il;Lee, Hay-Young;Paik, Sang-Gi
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Nitric oxide(NO) has been known to play important roles in numerous physiologic processes including neurotransmission, vasorelaxation, and cellular apoptosis. Using a mouse cDNA gene chip, we examined expression patterns and time course of NO-dependent genes in mouse macrophage RAW264.7 cells. Genes shown to be upregulated more than two fold or at least at two serial time points were further selected and validated by RT-PCR. Finally, 81 selected genes were classified by function as signaling, apoptosis, inflammation, transcription, translation, ionic homeostasis and metabolism. Among those, genes related with signaling, apoptosis and inflammation, such as guanylate cyclase 1, soluble, alpha3(Gucy1a3); protein kinase C, alpha($Pkc{\alpha}$); lymphocyte protein tyrosine kinase(Lck); BCL2/adenovirus E1B 19 kDa-interacting protein(Bnip3); apoptotic protease activating factor 1(Apaf1); X-linked inhibitor of apoptosis(Xiap); cyclin G1(Ccng1); chemokine(C-C motif) ligand 4(Ccl4); B cell translocation gene 2, anti-proliferative(Btg2); lysozyme 2(Lyz2); secreted phosphoprotein 1(Spp1); heme oxygenase(decycling) 1(Hmox1); CD14 antigen(Cd14); and granulin(Grn) may play important roles in NO-dependent responses in murine macrophages.

Relationship between reactive oxygen species and autophagy in dormant mouse blastocysts during delayed implantation

  • Shin, Hyejin;Choi, Soyoung;Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • Objective: Under estrogen deficiency, blastocysts cannot initiate implantation and enter dormancy. Dormant blastocysts live longer in utero than normal blastocysts, and autophagy has been suggested as a mechanism underlying the sustained survival of dormant blastocysts during delayed implantation. Autophagy is a cellular degradation pathway and a central component of the integrated stress response. Reactive oxygen species (ROS) are produced within cells during normal metabolism, but their levels increase dramatically under stressful conditions. We investigated whether heightened autophagy in dormant blastocysts is associated with the increased oxidative stress under the unfavorable condition of delayed implantation. Methods: To visualize ROS production, day 8 (short-term dormancy) and day 20 (long-term dormancy) dormant blastocysts were loaded with $1-{\mu}M$ 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-$H_2DCFDA$). To block autophagic activation, 3-methyladenine (3-MA) and wortmannin were used in vivo and in vitro, respectively. Results: We observed that ROS production was not significantly affected by the status of dormancy; in other words, both dormant and activated blastocysts showed high levels of ROS. However, ROS production was higher in the dormant blastocysts of the long-term dormancy group than in those of the short-term group. The addition of wortmannin to dormant blastocysts in vitro and 3-MA injection in vivo significantly increased ROS production in the short-term dormant blastocysts. In the long-term dormant blastocysts, ROS levels were not significantly affected by the treatment of the autophagy inhibitor. Conclusion: During delayed implantation, heightened autophagy in dormant blastocysts may be operative as a potential mechanism to reduce oxidative stress. Further, ROS may be one of the potential causes of compromised developmental competence of long-term dormant blastocysts after implantation.

Coenzyme Q10: a progress towards the treatment of neurodegenerative disease

  • Kumar, Peeyush;Kumar, Pramod;Ram, Alpana;Kuma, Mithilesh;Kumar, Rajeev
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.239-253
    • /
    • 2010
  • Coenzyme $Q_{10}$ ($CoQ_{10}$, or ubiquinone) is an electron carrier of the mitochondrial respiratory chain (electron transport chain) with antioxidant properties. In view of the involvement of $CoQ_{10}$ in oxidative phosphorylation and cellular antioxidant protection a deficiency in this quinone would be expected to contribute to disease pathophysiology by causing a failure in energy metabolism and antioxidant status. Indeed, a deficit in $CoQ_{10}$ status has been determined in a number of neuromuscular and neurodegenerative disorders. Primary disorders of $CoQ_{10}$ biosynthesis are potentially treatable conditions and therefore a high degree of clinical awareness about this condition is essential. A secondary loss of $CoQ_{10}$ status following HMG-CoA reductase inhibitor (statins) treatment has been implicated in the pathophysiology of the myotoxicity associated with this pharmacotherapy. $CoQ_{10}$ and its analogue, idebenone, have been widely used in the treatment of neurodegenerative and neuromuscular disorders. These compounds could potentially play a role in the treatment of mitochondrial disorders, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, and other conditions which have been linked to mitochondrial dysfunction. This article reviews the physiological roles of $CoQ_{10}$, as well as the rationale and the role in clinical practice of $CoQ_{10}$ supplementation in different neurological diseases, from primary $CoQ_{10}$ deficiency to neurodegenerative disorders. These will help in future for treatment of patients suffering from neurodegenerative disease.

Characterization of Hemolytic Aeromonas sp. MH-8 Responding to the Exposure of Green Tea Catechin, EGCG (녹차 카테킨 EGCG의 노출에 따른 식중독 세균인 용혈성 Aeromonas sp. MH-8의 특성조사)

  • Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.228-236
    • /
    • 2016
  • The aim of this study was to characterize the hemolytic Aeromonas sp. MH-8 exposed to green tea catechin, epigallocatechin gallate (EGCG). Initially, the hemolytic Aeromonas sp. MH-8 was enriched and isolated from stale fish. Bactericidal effects of MH-8 exposed to EGCG ranging from 1 mg/mL to 4 mg/mL were monitored, and complete bactericidal effects were achieved within 3 h at 3 mg/mL and higher concentrations. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharides increased or decreased in the strain MH-8 treated to different concentrations and exposing periods of EGCG in exponentially growing cultures. The stress shock proteins (70-kDa DnaK and 60-kDa GroEL), which might contribute to enhancing the cellular resistance to the cytotoxic effect of EGCG, were induced at different concentrations of EGCG exposed to cell culture of MH-8. Scanning electron microscopic analysis demonstrated the presence of irregular rod shapes with umbilicated surfaces for cells treated with EGCG. 2-DE of soluble protein fractions from MH-8 cultures showed 18 protein spots changed by EGCG exposure. These proteins involved in chaperons (e.g., DnaK, GroEL and trigger factor), enterotoxins (e.g., aerolysin and phospholipase C precursor), LPS synthesis (e.g., LPS biosynthesis protein and outer membrane protein A precursor), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. In consequence, EGCG was found to have substantial antibacterial effects against food-poisoning causing bacterium, hemolytic Aeromonas sp. MH-8. Also the results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on Aeromonas sp. MH-8.

Alzheimer's Disease and Apoptosis

  • Kim, Young-Hoon;Kim, Hye-Sun;Park, Cheol-Hyoung;Jeong, Sung-Jin;Kim, Young-Kyung;Kim, Sun-Hee;Lee, Sang-Kyeng;Suh, Yoo-Hun;Kim, Sung Su
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • Apoptosis is a form of cell death in which the cells shrink and exhibit nuclear chromatin condensation and DNA fragmentation, and yet maintain membrane integrity. Many lines of evidence have shown that brain neurons are vulnerable to degeneration by apoptosis. Also it has been suggested that apoptosis is one of the mechanism contributing neuronal loss in Alzheimer's disease(AD), since the conditions in the disease($A{\beta}$ peptide, oxidative stress, low energy metabolism) are the inducers that activate apoptosis. Indeed some neurons in vulnerable regions of the AD brain show DNA damage, chromatin condensation, and apoptic bodies. Consistently, mutations in AD causative genes(Amyloid precursor protein, Presenilin-1 and Presenilin- 2) increase $A{\beta}$ $peptide_{1-42}(A{\beta}_{1-42})$ and sensitize neuronal cell to apoposis. However, several lines of evidence have shown that the location of neuronal loss and $A{\beta}$ peptide deposition is not correlated in AD brain and transgenic mice brain over-expressing $A{\beta}_{1-42}$. Taken together, these data may indicated that $A{\beta}$ peptide(and other causative factors of AD) can interact with other cellular insults or risk factors to exacerbate pathological mechansim of AD through apoptosis. Thus, this review discusses possible role and mechanism of apoptosis in AD.

  • PDF