Browse > Article
http://dx.doi.org/10.7841/ksbbj.2016.31.4.228

Characterization of Hemolytic Aeromonas sp. MH-8 Responding to the Exposure of Green Tea Catechin, EGCG  

Kim, Dong-Min (Department of Life Science and Biotechnology, Soonchunhyang University)
Oh, Kye-Heon (Department of Life Science and Biotechnology, Soonchunhyang University)
Publication Information
KSBB Journal / v.31, no.4, 2016 , pp. 228-236 More about this Journal
Abstract
The aim of this study was to characterize the hemolytic Aeromonas sp. MH-8 exposed to green tea catechin, epigallocatechin gallate (EGCG). Initially, the hemolytic Aeromonas sp. MH-8 was enriched and isolated from stale fish. Bactericidal effects of MH-8 exposed to EGCG ranging from 1 mg/mL to 4 mg/mL were monitored, and complete bactericidal effects were achieved within 3 h at 3 mg/mL and higher concentrations. SDS-PAGE with silver staining revealed that the amount of lipopolysaccharides increased or decreased in the strain MH-8 treated to different concentrations and exposing periods of EGCG in exponentially growing cultures. The stress shock proteins (70-kDa DnaK and 60-kDa GroEL), which might contribute to enhancing the cellular resistance to the cytotoxic effect of EGCG, were induced at different concentrations of EGCG exposed to cell culture of MH-8. Scanning electron microscopic analysis demonstrated the presence of irregular rod shapes with umbilicated surfaces for cells treated with EGCG. 2-DE of soluble protein fractions from MH-8 cultures showed 18 protein spots changed by EGCG exposure. These proteins involved in chaperons (e.g., DnaK, GroEL and trigger factor), enterotoxins (e.g., aerolysin and phospholipase C precursor), LPS synthesis (e.g., LPS biosynthesis protein and outer membrane protein A precursor), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. In consequence, EGCG was found to have substantial antibacterial effects against food-poisoning causing bacterium, hemolytic Aeromonas sp. MH-8. Also the results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on Aeromonas sp. MH-8.
Keywords
Aeromonas sp. MH-8; Hemolysis; Green tea catechin; EGCG;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shigemune, N., M. Nakayama, T. Tsugukuni, J. Hitomi, C. Yoshizawa, Y. Mekada, M. Kurahachi, and T. Miyamoto (2012) The mechanisms and effect of epigallocatechin gallate (EGCg) on the germination and proliferation of bacterial spores. Food Control 27: 269-274.   DOI
2 Shimamura, T., W. H. Zhao, and Z. Q. Hu (2007) Mechanism of action and potential for use of tea catechin as an anti-infective agent. Medi. Chem. 6: 57-62.
3 Chuang, S. E. and F. R. Blatiber (1993) Characterization of twentysix new heat shock genes of Escherichia coli. J. Bacteriol. 175: 5242-5252.   DOI
4 Periago, P. M., W. van Schaik, T. Abee, and J. A. Wouters (2002) Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68: 3486-3495.   DOI
5 Howard S. P., W. J. Garland, M. J. Green, and J. T Buckley (1987) Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. J. Bacteriol. 169: 2869-2871.   DOI
6 Law, D. (2000). Virulence factors of Escherichia coli O157 and other Shiga toxin-producing E. coli. J. Appl. Microbiol. 88: 729-745.   DOI
7 Johnson, C. E. and P. F. Bonventre (1967) Lethal toxin of Bacillus cereus I. relationships and nature of toxin, hemolysin, and phospholipase. J. Bacteriol. 94: 306-316.
8 Flores-Diiaz, M. and A. Alape-Giron (2003) Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42: 979-986.   DOI
9 Alessio, H. M., A. E. Hagerman, M. Romanello, S. Carando, M. S. Threlkeld, J. Rogers, Y. Dimitrova, S. Muhanned, and R. L. Wiley (2002) Consumption of green tea protects rats from exercise-induced oxidative stress in kidney and liver. Nutr. Res. 22: 1177-1188.   DOI
10 Graham, H. N (1992) Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21: 334-350.   DOI
11 Hamilton-Miller, J. M. (1995) Antimicrobial properties of tea (Camella sinensis, L). Antimicrob. Agents Chemother. 39: 2375-2377.   DOI
12 Cowan, M. M (1999) Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
13 Hu, Z. Q., W. H. Zhao, N. Asano, Y. Yoda, Y. Hara, and T. Shimamura (2002) Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 558-560.   DOI
14 Yu, M. O., J. W. Chun, and K. H. Oh (2004) Effect of tea catechin, EGCG (epigallocatechin gallate) on killing of oral bacteria. Kor. J. Microbiol. 40: 364-366.
15 Rahman M., P. C. Navarro, I. Kuhn, G. Huys, J. Swings, and R. Mollby (2002) Identification and characterization of pathogenic Aeromonas veronii biovar sobria associated with epizootic ulcerative syndrome in fish in Bangladesh. Appl. Environ. Microbiol. 68: 650-655.   DOI
16 Cho, Y. S., J. J. Oh, and K. H. Oh (2011) Synergistic anti-bacterial and proteomic effects of epigallocatechin gallate on clinical isolates of imipenem-resistant Klebsiella pneumoniae. Phytomedicine 18: 941-946.   DOI
17 Janda, J. Michael and S. L. Abbott (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clinic. Microbiol. Rev. 23: 35-73.   DOI
18 McGarey, D. J., L. Milanesi, D. P. Foley, B Reyes, L. C. Frye, and D. V. Lim (1991) The role of motile aeromonads in the fish disease, ulcerative disease syndrome (UDS). Experientia 47: 441-444.
19 Baek, H., M. S. Choi, and K. H. Oh (2012) Characterization and antibacterial activity of Lactobacillus casei HK-9 isolated from Korean rice wine, makgeolli. KSBB J. 27:161-166.   DOI
20 Jang, E. H., S. J. Lim, and T. H. Kim (2011) Distribution of antibiotic resistant microbes in aquaculture effluent and disinfection by electron beam irradiation. J. Kor. Soc. Environ. Eng. 33: 492-500.   DOI
21 Johnson, K. G. and M. B. Perry (1976) Improved techniques for the preparation of bacterial lipopolysaccharides. Can. J. Microbiol. 22: 29-34.   DOI
22 Fomsgaard, A., M. A. Freudenberg, and C. Galanos (1990) Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J. Clin. Microbiol. 28: 2627-2631.
23 Choi, H. K. and K. H. Oh (2012) Cellular responses of Salmonella typhimurium exposed to the exposure of green tea polyphenols. Kor. J. Microbiol. 48: 87-92.   DOI
24 Bollag, D. M., M. D. Rozycki, and S. J. Edelstein (1996) Protein methods. 2nd ed. New York, Wiley-Liss, USA.
25 Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular clonin: A Laboratory Manual. 2nd ed., pp. 23-38. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
26 Ho, E. M., H. W. Chang, S. I. Kim, H. Y. Kahng and K. H. Oh (2004) Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr. Microbiol. 49: 346-352.   DOI
27 Hara, Y., F. Shahidi, and C. T. Ho (1999) Phytochemicals and phytopharmaceuticals. pp. 214-221. AOCS Press, Champaign, IL, USA.
28 Hajime, I., T. Nakae, Y. Hara, and T. Shimamura (1993) Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta. 1147: 132-136.   DOI