• 제목/요약/키워드: Cellular immune response

검색결과 362건 처리시간 0.03초

Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives

  • Ray, Sujit Kumar;Macoy, Donah Mary;Kim, Woe-Yeon;Lee, Sang Yeol;Kim, Min Gab
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.503-511
    • /
    • 2019
  • As sessile organisms, plants have developed sophisticated system to defend themselves against microbial attack. Since plants do not have specialized immune cells, all plant cells appear to have the innate ability to recognize pathogens and turn on an appropriate defense response. The plant innate immune system has two major branches: PAMPs (pathogen associated molecular patterns)-triggered immunity (PTI) and effector-triggered immunity (ETI). The ability to discriminate between self and non-self is a fundamental feature of living organisms, and it is a prerequisite for the activation of plant defenses specific to microbial infection. Arabidopsis cells express receptors that detect extracellular molecules or structures of the microbes, which are called collectively PAMPs and activate PTI. However, nucleotidebinding site leucine-rich repeats (NB-LRR) proteins mediated ETI is induced by direct or indirect recognition of effector molecules encoded by avr genes. In Arabidopsis, plasmamembrane localized multifunctional protein RIN4 (RPM1-interacting protein 4) plays important role in both PTI and ETI. Previous studies have suggested that RIN4 functions as a negative regulator of PTI. In addition, many different bacterial effector proteins modify RIN4 to destabilize plant immunity and several NB-LRR proteins, including RPM1 (resistance to Pseudomonas syringae pv. maculicola 1), RPS2 (resistance to P. syringae 2) guard RIN4. This review summarizes the current studies that have described signaling mechanism of RIN4 function, modification of RIN4 by bacterial effectors and different interacting partner of RIN4 in defense related pathway. In addition, the emerging role of the RIN4 in plant physiology and intercellular signaling as it presents in exosomes will be discussed.

Effect of pregabalin on nociceptive thresholds and immune responses in a mouse model of incisional pain

  • Park, Jung Hyun;Cho, Seung Hee;Kim, Rip;Na, Sang Hoon;Kang, Eun-sun;Yeom, Mi-young;Jang, Yeon
    • The Korean Journal of Pain
    • /
    • 제34권2호
    • /
    • pp.185-192
    • /
    • 2021
  • Background: It is known that some analgesics as well as pain can affect the immune system. The aim of this study was to investigate the analgesic effect and immunomodulation of pregabalin (PGB) in a mouse incisional pain model. Methods: A postoperative pain model was induced by hind paw plantar incision in male BALB/c mice. Mice were randomly divided into four groups (n = 8): a saline-treated incision (incision), PGB-treated incision (PGB-incision), sham controls without incision or drug treatment (control), and a PGB-treated control (PGB-control). In the PGB treated groups, PGB was administered intraperitoneally (IP) 30 minutes before and 1 hour after the plantar incision. Changes of the mechanical nociceptive thresholds following incision were investigated. Mice were euthanized for spleen harvesting 12 hours after the plantar incision, and natural killer (NK) cytotoxicity to YAC 1 cells and lymphocyte proliferation responses to phytohemagglutinin were compared among these four groups. Results: Mechanical nociceptive thresholds were decreased after plantar incision and IP PGB administration recovered these decreased mechanical nociceptive thresholds (P < 0.001). NK activity was increased by foot incision, but NK activity in the PGB-incision group was significantly lower than that in the Incision group (P < 0.001). Incisional pain increased splenic lymphocyte proliferation, but PGB did not alter this response. Conclusions: Incisional pain alters cell immunity of the spleen in BALB/c mice. PGB showed antinocieptive effect on mouse incisional pain and attenuates the activation of NK cells in this painful condition. These results suggest that PGB treatment prevents increases in pain induced NK cell activity.

산란계에서 Chlorhexidine-inactivated Salmonella Enteritidis, S. Typhimurium 및 S. Gallinarum 3가 백신의 효능평가 (Evaluation of the protective efficacy of trivalent Salmonella inactivated vaccine including Chlorhexidine-inactivated Salmonella Enteritidis, S. Typhimurium and S. Gallinarum in poultry)

  • 유영주;유정희;허진
    • 한국동물위생학회지
    • /
    • 제46권4호
    • /
    • pp.303-314
    • /
    • 2023
  • Protective efficacy of trivalent Salmonella inactivated vaccine containing Chlorhexidine-inactivated S. Enterltidis (SE), S. Typhimurium (ST), and S. Gallinarum (SG) strains, was evaluated in this study. A total of 70 brown nick layers were divided into 7 groups, A to G, containing 10 hens per group. All hens in groups B to D were intramuscularly immunized with approximately 7×108 cells (3×108 cells of SE+1×108 SE+1×108 cells of ST+3×108 cells of SG) of the trivalent vaccine in 0.5 mL of PBS. All chickens in groups E to G were injected with sterile PBS. All hens of groups B and E, groups C and F, and groups D and G were orally challenged with approximately 2 ×109 CFU of wild-type SE, ST, and SG, respectively. Serum IgG titers and CD3+CD4+ T-cells, and CD3+CD8+ T-cells levels of groups B to D significantly higher than those of group A. In addition, all animals in groups A to C, E and F showed no clinical symptoms and survived after the virulent challenges, whereas one chicken in group D died and all chickens in group G died following the challenge. The protection against wild-type SE and ST in liver, spleen, cecum, and cloaca of groups B and C chickens was significant effective as compared with those in groups E and F. These indicate that the trivalent inactivated vaccine can be an effective tool for prevention of Salmonella infections by inducing robustly protective immune responses and cellular immune response in chickens.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

T cell phenotype and intracellular $IFN-{\gamma}$ production in peritoneal exudate cells and gut intraepithelial lymphocytes during acute Toxoplasma gondii infection in mice

  • Lee, Young-Ha;Shin, Dae-Whan
    • Parasites, Hosts and Diseases
    • /
    • 제40권3호
    • /
    • pp.119-129
    • /
    • 2002
  • Although there are many reports on the splenic (systemic) T cell response after Toxoptasma gondii infection, little information is available regarding the local T cell responses of peritoneal exudate cells (PEC) and gut intraepithelial Iymphocytes (IEL) following peroral infection with bradyzoites. Mice were infected with 40 cysts of the 76K strain of T. gondii, and then sacrificed at days 0, 1, 4, 7 and 10 postinfection (PI). The cellular composition and T cell responses of PEC and IEL were analyzed. The total number of PEC and IEL per mouse increased after infection, but the ratio of increase was higher in IEL. Lymphocytes were the major component of both PEC and IEL. The relative percentages of PEC macrophages and neutrophils/eosinophils increased signiflcantly at day 1 and 4 PI, whereas those of IEL did not change significantly. The percentage of PEC NK1.1 and ${\gamma\delta}T$ cells peaked at day 4 PI (p < 0.0001), and CD4 and $CD8{\alpha}T$ cells increased continuously after infection. The percentages of IEL $CD8{\alpha}$ and ${\gamma\delta}T$ cells decreased slightly at first, and then increased. CD4 and NK1.1 T cells of IEL did not change significantly after infection. $IFN-{\gamma}-producing$ PEC NK1.1 T cells increased significantly from day 1 PI, but the other T cell subsets produced $IFN-{\gamma}$ abundantly thereafter. The proportion of IEL $IFN-{\gamma}-producing$ $CD8{\alpha}$ and ${\gamma\delta}T$ cells increased significantly after infection, while IEL NK1.1 T cells had similar $IFN-{\gamma}$ production patterns. Taken together, CD4 T cells were the major phenotype and the important $IFN-{\gamma}$ producing T cell subsets in PEC after oral infection with T. gondii whereas $CD8{\alpha}T$ cells had these roles in IEL. These results suggest that PEC and IEL comprise different cell differentials and T cell responses, and according to infection route these factors may contribute to the different cellular immune responses.

마우스를 이용한 송화분 섭취의 면역원성 및 안전성 탐색 (Immunological Activity and Immunotoxicity of Pine Tree Pollen in Mice)

  • 김영옥;김광호;박현지;박영철;박성욱;허용
    • Toxicological Research
    • /
    • 제21권3호
    • /
    • pp.235-240
    • /
    • 2005
  • Pollen has been used for prevention or treatment of certain diseases such as diabetes arthritis or cancer in traditional medicine. Among various pollens, pine tree pollen is known to relieve hypertension, suppress fatty liver progression, and facilitate the digestion, but its immunological activities are less known. To evaluate immunological reactivities and immunotoxicities of pine tree pollen, BALB/c mice were administered to the poller through oral route. Pine tree pollen suspended in distilled water or extracted with methanol has been administered at the concentration of 0, 10, or 100 mg/kg five days per week for four weeks. Polyclonal activation of splenic T cells with phytohemagglutinins did not induce a significant difference in IL-4 and $IFN_{\gamma}$ production between the pollen-administered mice groups and the control mice. Furthermore, polyclonal activation of splenic B cells with lipopolysaccharides did not result a significant difference in IgG1 and IgG2a production among the groups. These findings imply that the intake of pine tree pollen does not bring any humoral and cellular immune-dysrequlation. Whereas, viability of Listeria monocytogenes was suppressed in the mice administered with 100 mg/kg bw methanol extract, indicating the potential ability of pine tree pollen to enhance cell-mediated immunity mediated by type-1 helper T cells. In addition, aberrant upregulation of plasma IgG1 level was observed in the pollen-administered mice, which suggests a possibility of allergic response induction through the pine tree pollen uptake. Overall, pine tree pollen-mediated modulation of humoral or cellular immunity is worthy of further systematic investigation.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Insight from sirtuins interactome: topological prominence and multifaceted roles of SIRT1 in modulating immunity, aging, and cancer

  • Nur Diyana Zulkifli;Nurulisa Zulkifle
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.23.1-23.9
    • /
    • 2023
  • The mammalian sirtuin family, consisting of SIRT1-SIRT7, plays a vital role in various biological processes, including cancer, diabetes, neurodegeneration, cardiovascular disease, cellular metabolism, and cellular homeostasis maintenance. Due to their involvement in these biological processes, modulating sirtuin activity seems promising to impact immuneand aging-related diseases, as well as cancer pathways. However, more understanding is required regarding the safety and efficacy of sirtuin-targeted therapies due to the complex regulatory mechanisms that govern their activity, particularly in the context of multiple targets. In this study, the interaction landscape of the sirtuin family was analyzed using a systems biology approach. A sirtuin protein-protein interaction network was built using the Cytoscape platform and analyzed using the NetworkAnalyzer and stringApp plugins. The result revealed the sirtuin family's association with numerous proteins that play diverse roles, suggesting a complex interplay between sirtuins and other proteins. Based on network topological and functional analysis, SIRT1 was identified as the most prominent among sirtuin family members, demonstrating that 25 of its protein partners are involved in cancer, 22 in innate immune response, and 29 in aging, with some being linked to a combination of two or more pathways. This study lays the foundation for the development of novel therapies that can target sirtuins with precision and efficacy. By illustrating the various interactions among the proteins in the sirtuin family, we have revealed the multifaceted roles of SIRT1 and provided a framework for their possible roles to be precisely understood, manipulated, and translated into therapeutics in the future.

Streptococcus iniae의 형태학적 특성과 병원성 (Morphological Characteristics and Pathogenicity of Streptococcus iniae)

  • 김현정;우승호;김진우;박수일
    • 한국어병학회지
    • /
    • 제18권2호
    • /
    • pp.167-178
    • /
    • 2005
  • 본 연구에서는 S. iniae의 병원성 요인으로 작용할 수 있는 capsule의 존재 여부를 확인하고 그에 따른 capsule과 병원성과의 상관 관계를 조사하였다. 즉, 집락의 형태학적 특성에 따라 viscous form (V+)과 non-viscous form (V-)의 균주로 구분하여 그 특성을 비교 분석하였다. 분리균의 생리학적 및 생화학적 특성으로는 숙주의 방어 기작에 대한 저항성이나 병원성 차이를 구분할 수 없었으나 형태학적으로 큰 차이를 있음을 알 수 있었다. 즉, V+인 경우 cell wall 표면에 capsule이 존재하지만 V-에서는 capsule이 존재하지 않는 것으로 확인되었다. V+는 넙치 혈청에서 증식할 수 있지만 V-는 넙치 혈청에 의해 살균되는 것으로 나타나 capsule의 유무에 따라 넙치의 체액성 면역 요소에 대한 저항력에서 차이가 나는 것을 알 수 있었다. 또한, V+는 넙치 신선 혈청으로 감작한 경우에도 V-에 비해 macrophage의 식균율이 낮았으며 식균된 이후에는 균 수가 지속적으로 감소하는 것을 확인할 수 있었고 일반 어류 주화 세포 내로 침입하여 생존 및 증식할 수 있는 것으로 나타났다. 이들 결과는 앞으로의 백신 개발에 유용한 기초 자료로 사용될 수 있을 것으로 사료되었다.

The effect of rhinovirus on airway inflammation in a murine asthma model

  • Kim, Eugene;Lee, Huisu;Kim, Hyun Sook;Won, Sulmui;Lee, Eu Kyoung;Kim, Hwan Soo;Bang, Kyongwon;Chun, Yoon Hong;Yoon, Jong-Seo;Kim, Hyun Hee;Kim, Jin Tack;Lee, Joon Sung
    • Clinical and Experimental Pediatrics
    • /
    • 제56권11호
    • /
    • pp.482-489
    • /
    • 2013
  • Purpose: The aim of the present study was to investigate the differences in lower airway inflammatory immune responses, including cellular responses and responses in terms of inflammatory mediators in bronchoalveolar lavage fluid (BALF) and the airway, to rhinovirus (RV) infection on asthma exacerbation by comparing a control and a murine asthma model, with or without RV infection. Methods: BALB/c mice were intraperitoneally injected with a crude extract of Dermatophagoides farinae (Df ) or phosphate buffered saline (PBS) and were subsequently intranasally treated with a crude extract of Df or PBS. Airway responsiveness and cell infiltration, differential cell counts in BALF, and cytokine and chemokine concentrations in BALF were measured 24 hours after intranasal RV1B infection. Results: RV infection increased the enhanced pause (Penh) in both the Df sensitized and challenged mice (Df mice) and PBS-treated mice (PBS mice) (P<0.05). Airway eosinophil infiltration increased in Df mice after RV infection (P<0.05). The levels of interleukin (IL) 13, tumor necrosis factor alpha, and regulated on activation, normal T cells expressed and secreted (RANTES) increased in response to RV infection in Df mice, but not in PBS mice (P<0.05). The level of IL-10 significantly decreased following RV infection in Df mice (P<0.05). Conclusion: Our findings suggest that the augmented induction of proinflammatory cytokines, Th2 cytokines, and chemokines that mediate an eosinophil response and the decreased induction of regulatory cytokines after RV infection may be important manifestations leading to airway inflammation with eosinophil infiltration and changes in airway responsiveness in the asthma model.