• Title/Summary/Keyword: Cellular capacity

Search Result 500, Processing Time 0.028 seconds

Erlang Capacity and Call Blocking Probability of CDMA Hierarchical Cellular Systems with Soft Handoff (소프트 핸드오프를 갖는 CDMA 계층구조 셀룰러 시스템의 Erlang 용량과 호 차단확률)

  • Seong, Bong-Hun;O, Hyeon-Seok;Han, Jae-Chung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.481-490
    • /
    • 2000
  • This paper analyzes interference power, Erlang capacity, the number of handoff occurrences, and call blocking probability with respect to the cell radius, the soft handoff region, and the mobile's velocity in a CDMA hierarchical cellular system. The microcell cellular system has the higher Erlang capacity than the macrocell cellular system. However, the microcell cellular system, which has a high system capacity through frequency reuse has the call blocking probability higher than macrocell cellular system. Also the interference power and the call blocking probability are decreased with the operation of soft handoff. Therefore, this paper presents the optimization of soft handoff region so as to maximize system's Erlang capacity with the low the call blocking probability according to mobile's velocity in the CDMA hierarchial cellular system.

  • PDF

Capacity analysis of CDMA cellular systems using erlang capacity (얼랑 캐패시티를 이용한 CDMA 셀룰라 시스템의 용량 분석)

  • 양정모;박진수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.39-46
    • /
    • 1998
  • In the FDMA and TDMA Cellular Systems, call blocking rise when frewquence slots andtime slots are used to ther users. Otherwise, in the CDMA cellular systems, call locking arises when interference level is above 10dB according to call of other users. System capacity is defined to be Erlang capacity that is the number of users when CDMA blocking probability is 1% or 2%. Users number corresponded channel number of AMPS and TDMA cellular systems. In this paper, we proposed new reuse-fraction using square of interference poser and obtained Erlang capacity for reverse link of CDMA cellular system with bit rate $R_{b}$, 9.6kbps and 14.4kbps. As a results, Erlange capacity of CDMA system have more 20.7 and 5.5 times than AMPS and TDMA system and have more form 1 to 4 Erlang thatn Viterbi and Padovani obtaned.d.

  • PDF

Erlang and Channel Capacity of Truncated Power Controlled CDMA Cellular Systems with Base Station Antenna Arrays

  • Kim, Nam-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.788-795
    • /
    • 2003
  • We analyze the performance of a truncated power controlled CDMA(code division multiple access) cellular systems with base station antenna arrays. Erlang capacity and the channel capacity which is a maximum date rate to maintain almost error free communication are analytically derived. The numerical results show there can be a substantial increase in Erlang capacity and in channel capacity by antenna arrays incorporating with the truncated power control scheme.

Reverse link analysis of CDMA cellular systems with mixed cell sizes (혼합된 셀 크기를 갖는 CDMA 셀룰라 시스템에서 역방향 링크 용량 분석)

  • 전형구;신성문;권수근;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.481-488
    • /
    • 2000
  • The demands for mobile communication service are growing rapidly. In heavily populated areas, cell split is unavoidable to increase the capacity of the cellular system. Cell splitting makes a cellular system to have mixed cell sizes. For cell planning, it is necessary to analyze the reverse link capacity of a CDMA cellular system with mixed cell sizes. In this paper, we propose a method to calculate the reverse link capacity of a CDMA cellular system with mixed cell sizes. When a macro cell is split into three micro cells, as an example, we calculate the reverse link capacities for the three micro cells and the neighboring macro cells. The results show that as the radius of a micro cell decreases, the reverse link capacity of the micro cell increases, while those of the neighboring macro cells decrease.

  • PDF

Capacity Enhancement of Uni-directional In-band Full-Duplex Cellular Networks through Co-channel Interference Cancellation

  • Ju, Hyungsik;Gwak, Donghyuk;Kim, Sun-Ae;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.207-217
    • /
    • 2018
  • As implementation of the in-band full duplex (IFD) transceiver becomes feasible, research interest is growing with respect to using IFD communication with cellular networks. However, the cellular network in which the IFD communication is applied inevitably suffers from an increase of the co-channel interference (CCI) due to IFD simultaneous transmission and reception. In this paper, we analyze the performance of a cellular network based on uni-directional IFD (UD-IFD) communication, wherein an IFD base station simultaneously supports downlink and uplink transmissions of half-duplex (HD) users. In addition, a multi-pair CCI cancellation (MP-CCIC) method combining CCIC and user pairing is proposed to improve the performance of the UD-IFD network. Simulation results showed that, compared to a conventional HD cellular network without using CCIC, capacity gain was not obtained in the UD-IFD cellular network. On the other hand, when applying the proposed MP-CCIC, the capacity of the UD-IFD cellular network greatly improved compared to that of an HD cellular network.

Mobility Influences on the Capacity of Wireless Cellular Networks

  • Zhang, Yide;Li, Lemin;Li, Bo
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.799-802
    • /
    • 2006
  • Capacity has always been a major concern in wireless networks. This letter studies the impact of mobility on the overall system capacity in wireless cellular networks. In this letter, we present a simple system model which we developed to capture the inherent relationships among system capacity, new call blocking probability, handoff dropping probability, call terminating probability, and bandwidth utilization rate. We investigate the complex relationship between mobility and capacity-related parameters. Through simulation, we demonstrate that mobility has a significant impact on capacity and is reversely proportional to the bandwidth reserved for handoff traffic.

  • PDF

Capacity Improvement with Dynamic Channel Assignment and Reuse Partitioning in Cellular Systems

  • Chen Steven Li;Chong Peter Han Joo
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In cellular mobile communications, how to achieve optimum system capacity with limited frequency spectrum is one of the main research issues. Many dynamic channel assignment (DCA) schemes have been proposed and studied to allocate the channels more efficiently, thus, the capacity of cellular systems is improved. Reuse partitioning (RP) is another technique to achieve higher capacity by reducing the overall reuse distance. In this paper, we present a network-based DCA scheme with the implementation of RP technique, namely dynamic reuse partitioning with interference information (DRP-WI). The scheme aims to minimize the effect of assigned channels on the availability of channels for use in the interfering cells and to reduce their overall reuse distances. The performance of DRP-WI is measured in terms of blocking probability and system capacity. Simulation results have confirmed the effectiveness of DRP-WI scheme. Under both uniform and non-uniform traffic distributions, DRP-WI exhibits outstanding performance in improving the system capacity. It can provide about 100% capacity improvement as compared to conventional fixed channel assignment scheme with 70 system channels.

Protective Effect of Co-treatment of Lutein and Fucoidan Against AAPH-Induced Damage in THP-1 Cells (루테인과 후코이단 병용 처리에 의한 AAPH 유도 세포 손상 억제)

  • Lee, Keyong-Ho;Yoon, Won-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.306-310
    • /
    • 2010
  • This study was designed to investigate the protective effect of the combination of fucoidan and lutein against AAPH-induced oxidative stress in THP-1 cells. The combination of fucoidan and lutein existed significant antioxidant effect on AAPH-damaged THP-1 cells by using lipid peroxidation and cellular antioxidant capacity assay. Fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) did not affect at all the viability of THP-1 cells, but protected the AAPH-damage of THP-1 cells at the same concentration. The viability of THP-1 cells was 0% with 1 mM AAPH alone, the protective effect of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) was 37% and 36%, respectively. The combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) exhibited significant inhibitory effect of lipid peroxidation using TBARS assay and cellular antioxidant capacity using DCFH-DA assay. In lipid peroxidation, the TBARS value of 1 mM AAPH alone was $0.8{\pm}0.03\;nM$ MDA, its of the combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) was $0.2{\pm}0.05\;nM$ MDA. In cellular antioxidant capacity, the combination of fucoidan($1\;{\mu}g/m{\ell}$) and lutein($10\;{\mu}g/m{\ell}$) exhibited significant cellular antioxidant capacity of 76%, whereas quercetin($10\;{\mu}M$) as positive control exhibited the cellular antioxidant capacity of 32%. These results indicate that the cotreatment of fucoidan and lutein protects against AAPH-induced THP-1 cell damage by inhibiting lipid peroxidation, increasing cellular antioxidant capacity.

Effects of soft handoff region ratio on the reverse link capacity of a DS-CDMA cellular system (DS-CDMA 셀룰라 시스템의 역방향 링크에서 소프트 핸드오프 영역비율의 효과)

  • 전형구;권오준;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1534-1539
    • /
    • 2001
  • In this paper, effects of soft handoff region on the reverse link capacity of a DS-CDMA cellular system are investigated. The reverse link capacity of a CDMA cellular system is calculated at a given soft handoff region ratio (SHRR) and path loss model. The results show that the reverse link capacity increases by 1 ∼ 4 channels according to the soft handoff region ratio and the path loss model. However, in the case of the path loss model having a large attenuation exponent ($\mu$ = 5) and a small shadowing standard deviation ( $\sigma$ = 6 dB), the reverse link capacity is no more increased by increasing SHRR.

  • PDF

Erlang Capacity Analysis For DS/CDMA Cellular System Considering Multipath Fading (다중경로 페이딩을 고려한 DS/CDMA 셀룰라 시스템의 얼랑용량 분석)

  • Kim, Hang-Rae;Kim, Nam
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.126-129
    • /
    • 1999
  • In this paper, it is assumed that a mobile radio channel is a Rayleigh distributed multipath fading channel and Erlang capacity and equivalent channel numbers are calculated for the reverse link of a imperfect power controlled DS/CDMA cellular system considering both shadowing and multipath fading. The DS/CDMA blocking probability is calculated based on a new analysis method that considers Erlang capacity and ICF(interference correction factor) using the median value of $E_{b(i)}$/ $I_{o}$ corresponding to each reverse link user. It is showed that the effect of multipath fading must not be ignored in Erlang capacity of the IS-95 DS/CDMA cellular system and the Erlang capacity is decreased according to the increase of the deviation of the imperfect power control, to the decrease of the processing gain, to the increase of the voice activity.y.

  • PDF