• Title/Summary/Keyword: Cellular alteration

Search Result 125, Processing Time 0.024 seconds

Growth Damage and Alteration of Cellular Tissue of Barley Infected by Barley yellow mosaic virus (보리호위축병 (Barley yellow mosaic virus)에 의한 보리의 생육 피해 및 세포학적 변화)

  • Park, Jong-Chul;Lee, Jae-Dong;Seo, Jae-Hwan;Kim, Yang-Kil;Jeong, Seon-Gi;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The damage of plant growth and alteration of cellular tissues of barley infected by Barley yellow mosaic virus (BaYMV) was explored. The infected plots significantly damaged in all of measured factors by the disease. In severely diseased plant, the viral infection affected on plant growth like as shorten culm length about 25cm, 36% constrained ratio, comparing to healthy. The yield decreased over 70% in diseased plots by fewer numbers of spike and kernel per square meter and spike, respectively. BaYMV constructed typical inclusion body like a pinwheel type inside barley leaves, and the infection affected on cellular elongation or growth not cell division in examined three parts as stem, neck of panicle and node, related to dwarfness of infected barley. The stem tissues were most severely affected on cell growth as restrained epidermis cell length in diameter and vascular bundle size. In neck of panicle tissues, distribution and size of tissues of fiber and cortex parts, respectively, showed differences between healthy and infected plants. In node part, healthy plant showed bigger tissue size as 1.5 times than infected plant. Theses results suggest that BaYMV infection could affect on the cell growth not cell division, and which resulted shorten culm length in plant growth and decreased yield, finally.

Alteration of mitochondrial DNA content modulates antioxidant enzyme expressions and oxidative stress in myoblasts

  • Min, Kyung-Ho;Lee, Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.519-528
    • /
    • 2019
  • Mitochondrial dysfunction is closely associated with reactive oxygen species (ROS) generation and oxidative stress in cells. On the other hand, modulation of the cellular antioxidant defense system by changes in the mitochondrial DNA (mtDNA) content is largely unknown. To determine the relationship between the cellular mtDNA content and defense system against oxidative stress, this study examined a set of myoblasts containing a depleted or reverted mtDNA content. A change in the cellular mtDNA content modulated the expression of antioxidant enzymes in myoblasts. In particular, the expression and activity of glutathione peroxidase (GPx) and catalase were inversely correlated with the mtDNA content in myoblasts. The depletion of mtDNA decreased both the reduced glutathione (GSH) and oxidized glutathione (GSSG) slightly, whereas the cellular redox status, as assessed by the GSH/GSSG ratio, was similar to that of the control. Interestingly, the steady-state level of the intracellular ROS, which depends on the reciprocal actions between ROS generation and detoxification, was reduced significantly and the lethality induced by $H_2O_2$ was alleviated by mtDNA depletion in myoblasts. Therefore, these results suggest that the ROS homeostasis and antioxidant enzymes are modulated by the cellular mtDNA content and that the increased expression and activity of GPx and catalase through the depletion of mtDNA are closely associated with an alleviation of the oxidative stress in myoblasts.

Cytosolic Calcium Alteration and Cell Injury by Silica in Rat Hepatocytes

  • Cha, Seok-Ho;Cha, Shin-Woo;Ko, Chang-Bo;Yu, Soung-Roung;Kim, Hye-Sun;Paik, Sang-Gi
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.507-513
    • /
    • 1998
  • The purpose of this study was to clarify the effect of silica on cytosolic free calcium mobilization and cell injury in primary cultured rat hepatocytes. Cytosolic free calcium concentration ([Ca$^{2+}$]) was measured employing calcium sensitive fluorescent dye, Fura-2 / AM, and cell injury was evaluated by determination of cellular ATP contents. Silica increased [Ca$^{2+}$], in a concentration-dependent manner in hepatocytes (10$^{-5}$ ~10$^{-2}$ M). Silica caused a biphasic increase in [Ca$^{2+}$], which was composed of an initial rapid rise and following sustained phase. $Ca^{2+}$ removal from the medium resulted in abolishment of initial and sustained phase of silica (10$^{-2}$ M)-induced [Ca$^{2+}$], in hepatocytes. The pretreatment with nifedipine (1 $\mu$M) attenuated silica-induced [Ca$^{2+}$], increases. Silica decreased cellular ATP contents in a dose-dependent manner. This silica-induced cell injury was attenuated by the pretreatment with EGTA (100 $\mu$M) and nifedipine (1 $\mu$M). This study suggests that the elevation of [Ca$^{2+}$], caused by silica may be due mainly to influx through a plasma membrane $Ca^{2+}$ channel and hepatotoxicity by silica relate with alteration of calcium homeostasis.ium homeostasis.

  • PDF

Cytoskeletal Alteration of Mammalian Oocytes During Meiotic Maturation, Fertilization and Parthenogenesis

  • Kim, Nam-Hyeong
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.3
    • /
    • pp.253-258
    • /
    • 1995
  • Microtubules and microfilaments are major cytoskeletal components in mammalian ova that provide the framework for chromosomal movement and cellular division. Extensive changes of cytoskeletal organization occur during maturation and fertilization. The changes in cytoskeletons are essential for the normal meiotic maturation and for the formation of the biparental diploid genome of the embryo, and thus are repeated at each cell cycle during embryonic development. Disturbance of the cytoskeletal organization could result in abnormal gamete development and early embryonic death.

  • PDF

Expression of Latent P-Type ATPases and Their Presumptive Roles in Cell Membrane of Helicobacter pylori

  • YUN, SOON-KYU;SE-YOUNG HWANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.378-385
    • /
    • 1997
  • Cation motive ATPases on cell membranes of Helicobacter pylori were investigated using everted membrane vesicles. Latent ATPases could be ascertained from aggregated vesicle using N, N-dimethylformamide (DMF) and Triton X-100. By contrast, ultrasonication or chloroform treatments caused membranes to be disrupted, resulting in an alteration of sensitivities against azide or vanadate. Considerable amounts of vanadate-sensitive enzymes were identified from vesicle micelles, prepared by the dilution method. These were activated in the presence of either $Ni^{2+}\;or\;NH_4^+$. From studies employing H. pylori intact cell systems, we found that ATPase expression of this bacterium was markedly dependent upon air composition. It was interesting that cellular expression of $Ni^{2+}$- or $NH_4^{+}$-motive ATPases was significantly affected by extracellular pH, suggesting that these unique enzymes may physiologically be involved in cellular $Ni^2$ import and $NH_4^+$ export, respectively.

  • PDF

Alteration of Cellular Adhesion Molecules during Aging and Their Modulation by Calorie Restriction

  • Zou, Yani;Kim, You-Jung;Kim, Ji-Young;Kang, Dae-Yoen;Kim, Nam-Deuk;Lee, Kyung-Hee;Chung, Hae-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.221.2-222
    • /
    • 2003
  • Expressions of cellular adhesion molecules (CAMs) are closely related to the formation of early atherosclerosis, an age-dependent vascular disorder. However. previous research provided only limited and conflicted reports on age-related alterations of CAMs' expressions and even much less is known the modulation of CAMs by calorie restriction (CR), In this study, expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, P-selectin and platelet/endothelial cell adhesion molecule-1 (PECAM-1) in aorta and kidney were investigated by western blot and immuno-histochemical stain utilizing ad libitum (AL) and CR rat. (omitted)

  • PDF

Activation of Signal Transduction Pathways Changes Protein Phosphorylation Patterns in the Rat Hvpothalamus (흰쥐 시상하부에서 신호전달계의 활성화에 의한 단백질 인산화의 변화)

  • Lee, Byung-Ju;Sun
    • The Korean Journal of Zoology
    • /
    • v.37 no.1
    • /
    • pp.130-136
    • /
    • 1994
  • Although alteration in protein phosphorylation by specific protein kinases is of importance in transducing cellular signals in a variety of neural/endocrine systems, little is known about protein phosphorylation in the hvpothalamus. The present study aims to explore whether activation of the second messenger-dependent protein kinases affects phosphorylation of specific proteins using a cell free phosphorylation system followed by SDS-polvacrylamide gel electrophoresis. Cytoplasmic fractions derived from hvpothalami of immature rats were used as substrates and several activators and/or inhibitors of CAMP-, phosphatidylinositol- and Ca2+-calmodulin-dependent protein kinases were assessed. Many endogenous proteins were extensively phosphorylated and depending on the signal transduction pathways, phosphorvlation profiles were markedly different. The present data indicate that extracellular signals may affect cellular events through protein phosphorylation by second messengers-protein kinases in the rat hypothalamus.

  • PDF

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Estimation of Cellular Damages Caused by Paraquat and lead Using a Cell Culture System

  • Park, Young-Im;Noh, Eun-Woon;Han, Mu-Seok;Yi, Yong-Sub
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • A cell culture system of poplar (Populus alba x P.glandulosa) was established to test four different methods for evaluation of cellular stresses. Two different kinds of stresses were given to the cultures by adding either Pb(NO$_3$)$_2$ or paraquat and the cellular responses were monitored during a week period. While fresh weight reduction was observable in two days after the treatment of Pb(NO$_3$)$_2$, such changes were apparent only in later stage in paraquat treated cultures. Cells in paraquat treated cultures in the first 3 days showed no alteration in fresh weight as compared to untreated cultures, but had their MTT reducing activities completely inhibited. Neither Evans blue staining nor ion conductivity of the medium was consistent with fresh weight changes of the cultures. Overall, cell clumps formed during suspension culture appeared to interfere with staining and washing reactions and thus cause the assays unreliable. Among the four methods examined, fresh weight changes and MTT reducing activity appeared to be the most reliable and consistent.

  • PDF

MicroRNAs in Human Diseases: From Lung, Liver and Kidney Diseases to Infectious Disease, Sickle Cell Disease and Endometrium Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.309-323
    • /
    • 2011
  • MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs of about 22 nucleotides that have recently emerged as important regulators of gene expression at the posttranscriptional level. Recent studies provided clear evidence that microRNAs are abundant in the lung, liver and kidney and modulate a diverse spectrum of their functions. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as infectious diseases, sickle cell disease and endometrium diseases as well as lung, liver and kidney diseases. As a consequence of extensive participation of miRNAs in normal functions, alteration and/or abnormalities in miRNAs should have importance in human diseases. Beside their important roles in patterning and development, miRNAs also orchestrated responses to pathogen infections. Particularly, emerging evidence indicates that viruses use their own miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the host cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here I briefly summarize the newly discovered roles of miRNAs in various human diseases including infectious diseases, sickle cell disease and enodmetrium diseases as well as lung, liver and kidney diseases.