• 제목/요약/키워드: Cellular activity

Search Result 2,431, Processing Time 0.031 seconds

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Effect of Scutellaria Baicalensis Georgi. Extract on Cisplatin-Induced Acute Renal Failure in Rabbits (토끼에서 cisplatin에 의해 유도된 급성 신부전시 황금(黃芩; Scutellaria Baicalensis Georgi.) 추출물의 효과)

  • Kim, Soo-Chang;Song, Yeong-Min;Lee, Sung-Dae;Song, Seung-Hee;Koh, Phil-Ok;Kim, Jong-Su;Kim, Chung-Hui;Kang, Chung-Boo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.392-399
    • /
    • 2007
  • Scutellaria baicalensis Georgi. (SBGE) is known to be antioxidant effect. In addition of the effects, we further investigated the SBGE on the antioxidant effect on a renal cortical slices cell and kidney protecting effects. The results were as follows. 1 When renal cortical slices separated from a rabbit's kidney were treated with 1mM tert-Butylhydroperoxide (t-BHP) in the presence of SBGE. SBGE significant prevented t-BHP induced increase in lactate dehydrogenase (LDH) release and lipid peroxidation. 2. When renal cortical slices separated from a rabbit's kidney were treated with oxidant $300{\mu}M$ cisplatin in the presence of SBGE. SBGE significant prevented cisplatin-induced increase in LDH release and lipid peroxidation. 3. Pretreatment with 0.1g/kg SBGE for seven day and treatment with 5 mg/kg cisplatin by the intraperitoneal injection The results were that the pretreatment group with SBGE showed a significant decrease in lipid peroxidation, increase in clearance rate of blood urea nitrogen (BUN) and creatinine in the kidney than the administering single agent group of cisplatin. and pretreatment group with SBGE showed intact microvillus of proximal tubule and no contraction of rumen, it was a similar result with normal group. With the results SBGE showed to be highly effective on antioxidant effect and cellular protection activity against cisplatin that was a toxic agent on a kidney. Therefore, SBGE is considered to have protective effective on a disordered kidney or kidney diseases such as nephritis or renal failure that cause tissue damages in a kidney.

A Review of Experimental study on Dementia in Oriental medicine;within Oriental medicine journal since 2000 (치매에 대한 최신 실험적 연구 동향;2000년 이후 한의학 학술지를 중심으로)

  • Choi, Sung-Youl;Kim, Dae-Hyun;Kim, Sang-Tae;Kim, Tae-Heon;Kang, Hyung-Won;Lyu, Yeong-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.1
    • /
    • pp.125-146
    • /
    • 2008
  • Objectives : The purpose of this study is to suggest for the following experimental study of dementia by reviewing recent oriental medicine journals that have been published since 2000. Methods: We have investigated various types of studies in relation to dementia through 90 articles that have been published from 2000 to 2007 in recent oriental medicine journals were registered Korea research foundation. Results and Conclusions : 1. Since 2000, 88 articles in relation to dementia have been published and almost of them are herbal medicine-centered studies. Also they show a tendency to increase every year. The journal of oriental neuropsychiatry carries the highest number of studies in relation to dementia. 2. According to the experimental paper, there are 30 cases of using herb simplexes, 48 cases of herb-combined prescription, and 10 cases of other ways. Especially 7 cases of using herb-combined prescription relation to Sasang constitution are all for the Taeumin. 3. There are 85 cases of Animal and cellular experimental, 60 cases of using pathologic model induced cytotoxic activity, a case of using L-NAME, 3 cases of 192 saporin, 4 cases of ibotenic acid, 10 cases of focal cerebral ischemia, 3 cases of alcohol-administered, and one case of natural degradation. 4. Moms water maze, Radial arm maze Passive avoidance learning model were using for examining learning and memory of model animal 5. We propose that following studies of dementia are to he investigated of the applied method of using siRNA with tranceduced gene, sample preparation by water-soaking, oriental medical diagnosis, standardization of differentiating symptom and herb simplexes, building the database by classified prescriptions, and experiment model which are based on precise examining mechanism with cell line as like mouse H19-7 hippocampus, rat HT22 hippocampus, astrocyte, microglia, using the model of animals at APP, PS1, BACE, CT99/PS1, APOE4, Tau, APP/PSI/Tau

  • PDF

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade

  • Seo, Jungwon;Lee, Jee Young;Sung, Min-Sun;Byun, Catherine Jeonghae;Cho, Du-Hyong;Lee, Hyeon-Ju;Park, Jung-Hyun;Cho, Ho-Seong;Cho, Sung-Jin;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.510-518
    • /
    • 2014
  • Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Myeloid-Derived Suppressor Cells Are Associated with Viral Persistence and Downregulation of TCR ζ Chain Expression on CD8+ T Cells in Chronic Hepatitis C Patients

  • Zeng, Qing-Lei;Yang, Bin;Sun, Hong-Qi;Feng, Guo-Hua;Jin, Lei;Zou, Zheng-Sheng;Zhang, Zheng;Zhang, Ji-Yuan;Wang, Fu-Sheng
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.66-73
    • /
    • 2014
  • Myeloid-derived suppressor cells (MDSCs) play an important role in impairing the function of T cells. We characterized MDSCs in two chronic hepatitis C (CHC) cohorts: a cross-sectional group that included 61 treatment-naive patients with CHC, 14 rapid virologic response (RVR) cases and 22 early virologic response (EVR) cases; and a longitudinal group of 13 cases of RVR and 10 cases of EVR after pegylated-interferon-${\alpha}$/ribavirin treatment for genotype 1b HCV infection. Liver samples from 32 CHC patients and six healthy controls were subjected to immunohistochemical analysis. MDSCs frequency in treatment-naive CHC was significantly higher than in RVR, EVR, or healthy subjects and was positively correlated with HCV RNA. Patients infected with HCV genotype 2a had a significantly higher frequency of MDSCs than those infected with genotype 1b. Decreased T cell receptor (TCR) ${\zeta}$ expression on $CD8^+$ T cells was significantly associated with an increased frequency of MDSCs in treatment-naive CHC patients and was restored by L-arginine treatment in vitro. Increased numbers of liver arginase-$1^+$ cells were closely associated with the histological activity index in CHC. The TCR ${\zeta}$ chain was significantly downregulated on hepatic $CD8^+$ T cells in CHC. During antiviral follow up, MDSCs frequency in peripheral blood mononuclear cells was directly correlated with the HCV RNA load in the plasma and inversely correlated with TCR ${\zeta}$ chain expression in $CD8^+$ T cells in both RVR and EVR cases. Notably, the RVR group had a higher frequency of MDSCs at baseline than the EVR group. Collectively, this study provides evidence that MDSCs might be associated with HCV persistence and downregulation of CD8 ${\zeta}$ chain expression.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Whitening Effect of Androsace umbellata Extract (봄맞이 추출물의 미백 효능 연구)

  • Kim, Bo Yun;Park, Sung Ha;Park, Byoung Jun;Kim, Jin Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • The purpose of this study is to identify the whitening effect of Androsace umbellata extract. To discover the anti-pigmentation effective, we investigated Androsace umbellata extract on tyrosinase and melanogenesis inhibition. As results, it reduced tyrosinase activity and melanin contents in B16F1 melanoma cells in a dose-dependent manner with decreased to about 32% at a concentration of $25{\mu}g/mL$. To reveal how it works in inner-cellular level, we performed Western blot method. We found out that it also inhibited the protein expression in tyrosinase, tyrosinase related protein 1 (TRP-1), and microphthalmia associated transcription factor (MITF) in melanocytes. Therefore, we successfully identified the whitening effect of Androsace umbellata extract, and this finding suggested that Androsace umbellata extract is a considerable potent cosmetics ingredient for whitening. Based on this, we anticipated further researches about Androsace umbellata extract for gene levels and additional mechanisms to develop not only for functional cosmetics but for medicines or healthcare food.

Lactobacillus plantarum APsulloc 331261 Fermented Products as Potential Skin Microbial Modulation Cosmetic Ingredients (Lactobacillus plantarum APsulloc 331261 발효 용해물의 피부 미생물 조절 효과)

  • Kim, Hanbyul;Myoung, Kilsun;Lee, Hyun Gee;Choi, Eun-Jeong;Park, Taehun;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The skin is colonized by a large number of microorganisms with a stable composition of species. However, disease states of skin such as acne vulgaris, psoriasis, and atopic dermatitis have specific microbiome compositions that are different from those of healthy skin. The target modulation of the skin microbiome can be a potential treatment for these skin diseases. Quorum sensing (QS), a bacterial cell-cell communication system, can control the survival of bacteria and increase cell density. Also, QS affects the pathogenicity of bacteria such as biofilm formation and protease production. In this study, we confirmed anti-QS activity of Amorepacific patented ingredients, which are Lactobacillus ferment lysate (using Lactobacillus plantarum APsulloc 331261, KCCM 11179P) through bio-reporter bacterial strain Chromobacterium violaceum. The purple pigment production of C. violaceum controlled by QS was reduced 27.3% by adding 10 ㎍/mL of Lactobacillus ferment lysate (freeze dried). In addition, the Lactobacillus ferment lysate increased growth of Staphylococcus epidermidis 12% and decreased growth of Pseudomonas aeruginosa 38.5% and its biofilm formation 17.7% at a concentration of 10 ㎍/mL compared to the untreated control group. Moreover, S. epidermidis was co-cultured with the representative dermatological bacterium Staphylococcus aureus in the same genus, the growth of S. epidermidis was increased 134 % and the growth of S. aureus was decreased 13%. These results suggest that fermented lysate using Lactobacillus plantarum APsulloc 331261 may be useful as a cosmetic ingredient that can control the balance of skin microbiome.