Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.106

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade  

Seo, Jungwon (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Lee, Jee Young (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Sung, Min-Sun (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Byun, Catherine Jeonghae (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Cho, Du-Hyong (Department of Pharmacology, School of Medicine, Eulji University)
Lee, Hyeon-Ju (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Park, Jung-Hyun (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Cho, Ho-Seong (Biosafety Research Institute and College of Veterinary Medicine, Chonbuk National University)
Cho, Sung-Jin (Department of Biology, College of Natural Sciences, Chungbuk National University)
Jo, Inho (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
Publication Information
Biomolecules & Therapeutics / v.22, no.6, 2014 , pp. 510-518 More about this Journal
Abstract
Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.
Keywords
Arsenite; Vascular disease; Nitric oxide; Endothelial nitric oxide synthase; Reactive oxygen species; Protein phosphatase 1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Greif, D. M., Kou, R. and Michel, T. (2002) Site-specific dephosphorylation of endothelial nitric oxide synthase by protein phosphatase 2A: evidence for crosstalk between phosphorylation sites. Biochemistry 41, 15845-15853.   DOI
2 Harris, M. B., Ju, H., Venema, V. J., Liang, H., Zou, R., Michell, B. J., Chen, Z. P., Kemp, B. E. and Venema, R. C. (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J. Biol. Chem. 276, 16587-16591.   DOI
3 Isenovic, E., Soskic, S., Dungen, H. D., Dobutovic, B., Elvis, T., Simone, I. and Marche, P. (2011) Regulation of endothelial nitric oxide synthase in pathophysiological conditions. Cardiovasc. Hematol. Disord. 11, 109-118.   DOI
4 Kamat, C. D., Green, D. E., Curilla, S., Warnke, L., Hamilton, J. W., Sturup, S., Clark, C. and Ihnat, M. A. (2005) Role of HIF signaling on tumorigenesis in response to chronic low-dose arsenic administration. Toxicol. Sci. 86, 248-257.   DOI
5 Kao, Y. H., Yu, C. L., Chang, L. W. and Yu, H. S. (2003) Low concentrations of arsenic induce vascular endothelial growth factor and nitric oxide release and stimulate angiogenesis in vitro. Chem. Res. Toxicol. 16, 460-468.   DOI
6 Kim, H. P., Lee, J. Y., Jeong, J. K., Bae, S. W., Lee, H. K. and Jo, I. (1999) Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem. Biophys. Res. Commun. 263, 257-262.   DOI   ScienceOn
7 Kim, H. S., Song, M. C., Kwak, I. H., Park, T. J. and Lim, I. K. (2003) Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence. J. Biol. Chem. 278, 37497-37510.   DOI
8 Liu, F., Jan, K. Y. (2000) DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic. Biol. Med. 28, 55-63.   DOI   ScienceOn
9 Kumagai, Y. and Pi, J. (2004) Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol. Appl. Pharmacol. 198, 450-457.   DOI
10 Lee, H. J., Oh, Y. K., Rhee, M., Lim, J. Y., Hwang, J. Y., Park, Y. S., Kwon, Y., Choi, K. H., Jo, I., Park, S. I., Gao, B. and Kim, W. H. (2007) The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. J. Mol. Biol. 369, 967-984.   DOI
11 Lee, M. Y., Jung, B. I., Chung, S. M., Bae, O. N., Lee, J. Y., Park, J. D., Yang, J. S., Lee, H. and Chung, J. H. (2003) Arsenic-induced dysfunction in relaxation of blood vessels. Environ. Health Perspect. 111, 513-517.   DOI   ScienceOn
12 Mandal, B. K. and Suzuki, K. T. (2002) Arsenic round the world: a review. Talanta 58, 201-235.   DOI   ScienceOn
13 Matsubara, M., Hayashi, N., Jing, T. and Titani, K. (2003) Regulation of endothelial nitric oxide synthase by protein kinase C. J. Biochem. (Tokyo) 133, 773-781.   DOI
14 Michell, B. J., Chen, Z., Tiganis, T., Stapleton, D., Katsis, F., Power, D. A., Sim, A. T. and Kemp, B. E. (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J. Biol. Chem. 276, 17625-17628.   DOI
15 Park, J. H., Kim, W. S., Kim, J. Y., Park, M. H., Nam, J. H., Yun, C. W., Kwon, Y. G. and Jo, I. (2011) Chk1 and Hsp90 cooperatively regulate phosphorylation of endothelial nitric oxide synthase at serine 1179. Free Radic. Biol. Med. 51, 2217-2226.
16 Rafikov, R., Fonseca, F. V., Kumar, S., Pardo, D., Darragh, C., Elms, S., Fulton, D. and Black, S. M. (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J. Endocrinol. 210, 271-284.   DOI
17 Park, J. H., Park, M., Byun, C. J. and Jo, I. (2012) c-Jun N-terminal kinase 2 phosphorylates endothelial nitric oxide synthase at serine 116 and regulates nitric oxide production. Biochem. Biophys. Res. Commun. 417, 340-345.   DOI
18 Park, J. H., Sung, H. Y., Lee, J. Y., Kim, H. J., Ahn, J. H. and Jo, I. (2013) B56alpha subunit of protein phosphatase 2A mediates retinoic acid-induced decreases in phosphorylation of endothelial nitric oxide synthase at serine 1179 and nitric oxide production in bovine aortic endothelial cells. Biochem. Biophys. Res. Commun. 430, 476-481.   DOI
19 Park, J. S., Seo, J., Kim, Y. O., Lee, H. S. and Jo, I. (2009) Coordinated regulation of angiopoietin-1 and vascular endothelial growth factor by arsenite in human brain microvascular pericytes: implications of arsenite-induced vascular dysfunction. Toxicology 264, 26-31.   DOI
20 Stea, F., Bianchi, F., Cori, L. and Sicari, R. (2014) Cardiovascular effects of arsenic: clinical and epidemiological findings. Environ. Sci. Pollut. Res. Int. 21, 244-251.   DOI
21 Tapio, S., Danescu-Mayer, J., Asmuss, M., Posch, A., Gomolka, M. and Hornhardt, S. (2005) Combined effects of gamma radiation and arsenite on the proteome of human TK6 lymphoblastoid cells. Mutat. Res. 581, 141-152.   DOI
22 Thomas, S. R., Chen, K. and Keaney, J. F., Jr. (2002) Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J. Biol. Chem. 277, 6017-6024.   DOI
23 Cosentino-Gomes, D., Rocco-Machado, N. and Meyer-Fernandes, J. R. (2012) Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697-10721.   DOI
24 Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C. and Chang, L. W. (2005) Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol. Appl. Pharmacol. 208, 277-284.   DOI   ScienceOn
25 Watts, V. L., Motley, E. D. (2009) Role of protease-activated receptor-1 in endothelial nitric oxide synthase-Thr495 phosphorylation. Exp. Biol. Med. (Maywood) 234, 132-139.   DOI
26 Barchowsky, A., Klei, L. R., Dudek, E. J., Swartz, H. M. and James, P. E. (1999) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic. Biol. Med. 27, 1405-1412.   DOI
27 Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I., Witters, L. A., Power, D. A., Ortiz de Montellano, P. R. and Kemp, B. E. (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443, 285-289.   DOI   ScienceOn
28 Cho, D. H., Choi, Y. J., Jo, S. A. and Jo, I. (2004) Nitric oxide production and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with troglitazone: evidence for involvement of peroxisome proliferator-activated receptor (PPAR) gamma-dependent and PPARgamma-independent signaling pathways. J. Biol. Chem. 279, 2499-2506.   DOI   ScienceOn
29 Cho, D. H., Park, J. H., Joo Lee, E., Jong Won, K., Lee, S. H., Kim, Y. H., Hwang, S., Ja Kwon, K., Young Shin, C., Song, K. H., Jo, I. and Han, S. H. (2014) Valproic acid increases NO production via the SH-PTP1-CDK5-eNOS-Ser signaling cascade in endothelial cells and mice. Free Radic. Biol. Med. 76, 96-106   DOI
30 Cho, D. H., Seo, J., Park, J. H., Jo, C., Choi, Y. J., Soh, J. W. and Jo, I. (2010) Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116. Hypertension 55, 345-352.   DOI
31 Fetrow, J. S., Siew, N. and Skolnick, J. (1999) Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily. FASEB J. 13, 1866-1874.   DOI
32 Hall, M. N., Liu, X., Slavkovich, V., Ilievski, V., Pilsner, J. R., Alam, S., Factor-Litvak, P., Graziano, J. H. and Gamble, M. V. (2009) Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in bangladesh. Environ. Health Perspect. 117, 825-831.   DOI
33 Fleming, I., Fisslthaler, B., Dimmeler, S., Kemp, B. E. and Busse, R. (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulindependent endothelial nitric oxide synthase activity. Circ. Res. 88, E68-75.   DOI
34 Gao, N., Shen, L., Zhang, Z., Leonard, S. S., He, H., Zhang, X. G., Shi, X. and Jiang, B. H. (2004) Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol. Cell. Biochem. 255, 33-45.   DOI
35 Pi, J., Kumagai, Y., Sun, G., Yamauchi, H., Yoshida, T., Iso, H., Endo, A., Yu, L., Yuki, K., Miyauchi, T. and Shimojo, N. (2000) Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia. Free Radic. Biol. Med. 28, 1137-1142.   DOI