Browse > Article
http://dx.doi.org/10.14348/molcells.2014.2282

Myeloid-Derived Suppressor Cells Are Associated with Viral Persistence and Downregulation of TCR ζ Chain Expression on CD8+ T Cells in Chronic Hepatitis C Patients  

Zeng, Qing-Lei (Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center)
Yang, Bin (Department of Interventional Radiology, Beijing 302 Hospital)
Sun, Hong-Qi (Department of Infectious Diseases, Zhengzhou Sixth People's Hospital)
Feng, Guo-Hua (Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center)
Jin, Lei (The Institute of Translational Hepatology)
Zou, Zheng-Sheng (Non-infectious Liver Disease Diagnosis and Treatment Center, Beijing 302 Hospital)
Zhang, Zheng (The Institute of Translational Hepatology)
Zhang, Ji-Yuan (The Institute of Translational Hepatology)
Wang, Fu-Sheng (Research Center for Biological Therapy, Beijing 302 Hospital, Peking University Health Science Center)
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in impairing the function of T cells. We characterized MDSCs in two chronic hepatitis C (CHC) cohorts: a cross-sectional group that included 61 treatment-naive patients with CHC, 14 rapid virologic response (RVR) cases and 22 early virologic response (EVR) cases; and a longitudinal group of 13 cases of RVR and 10 cases of EVR after pegylated-interferon-${\alpha}$/ribavirin treatment for genotype 1b HCV infection. Liver samples from 32 CHC patients and six healthy controls were subjected to immunohistochemical analysis. MDSCs frequency in treatment-naive CHC was significantly higher than in RVR, EVR, or healthy subjects and was positively correlated with HCV RNA. Patients infected with HCV genotype 2a had a significantly higher frequency of MDSCs than those infected with genotype 1b. Decreased T cell receptor (TCR) ${\zeta}$ expression on $CD8^+$ T cells was significantly associated with an increased frequency of MDSCs in treatment-naive CHC patients and was restored by L-arginine treatment in vitro. Increased numbers of liver arginase-$1^+$ cells were closely associated with the histological activity index in CHC. The TCR ${\zeta}$ chain was significantly downregulated on hepatic $CD8^+$ T cells in CHC. During antiviral follow up, MDSCs frequency in peripheral blood mononuclear cells was directly correlated with the HCV RNA load in the plasma and inversely correlated with TCR ${\zeta}$ chain expression in $CD8^+$ T cells in both RVR and EVR cases. Notably, the RVR group had a higher frequency of MDSCs at baseline than the EVR group. Collectively, this study provides evidence that MDSCs might be associated with HCV persistence and downregulation of CD8 ${\zeta}$ chain expression.
Keywords
arginase-1; hepatitis C virus; L-arginine; myeloid-derived suppressor cell; TCR ${\zeta}$ chain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Almand, B., Clark, J.I., Nikitina, E., van Beynen, J., English, N.R., Knight, S.C., Carbone, D.P., and Gabrilovich, D.I. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol.166, 678-689.   DOI
2 Chen, S., Akbar, S.M., Abe, M., Hiasa, Y., and Onji, M. (2011). Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin. Exp. Immunol. 166, 134-142.   DOI   ScienceOn
3 Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., Restifo, N.P., and Zanovello, P. (2000). Identification of a CD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood 96, 3838-3846.
4 Bronte, V., Serafini, P., Mazzoni, A., Segal, D.M., and Zanovello, P. (2003). L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24, 302-306.
5 Cai, W., Qin, A., Guo, P., Yan, D., Hu, F., Yang, Q., Xu, M., Fu, Y., Zhou, J., and Tang, X. (2013). Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J. Clin. Immunol. 33, 798-808.   DOI   ScienceOn
6 Condamine, T., and Gabrilovich, D.I. (2011). Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19-25.   DOI   ScienceOn
7 Corzo, C.A., Cotter, M.J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., Padhya, T., McCaffrey, T.V., McCaffrey, J.C., and Gabrilovich, D.I. (2009). Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693-5701.   DOI   ScienceOn
8 Das, A., Hoare, M., Davies, N., Lopes, A.R., Dunn, C., Kennedy, P.T., Alexander, G., Finney, H., Lawson, A., Plunkett, F.J., et al. (2008). Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J. Exp. Med. 205, 2111-2124.   DOI   ScienceOn
9 Desmet, V.J., Gerber, M., Hoofnagle, J.H., Manns, M., and Scheuer, P.J. (1994). Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 19, 1513-1520.   DOI   ScienceOn
10 Gabrilovich, D.I., and Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162-174.   DOI   ScienceOn
11 European Association of the Study of the Liver (2012). 2011 European Association of the Study of the Liver hepatitis C virus clinical practice guidelines. Liver Int. 32 Suppl 1, 2-8.
12 Filipazzi, P., Huber, V., and Rivoltini, L. (2012). Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol. Immunother. 61, 255-263.   DOI   ScienceOn
13 Kong, Y.Y., Fuchsberger, M., Xiang, S.D., Apostolopoulos, V., and Plebanski, M. (2013). Myeloid derived suppressor cells and their role in diseases. Curr. Med. Chem. 20, 1437-1444.   DOI
14 Kotsakis, A., Harasymczuk, M., Schilling, B., Georgoulias, V., Argiris, A., and Whiteside, T.L. (2012). Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J. Immunol. Methods 381, 14-22.   DOI   ScienceOn
15 Lauer, G.M. (2013). Immune responses to hepatitis C virus (HCV) infection and the prospects for an effective HCV vaccine or immunotherapies. J. Infect. Dis. 207 Suppl 1, S7-S12.   DOI   ScienceOn
16 Lavanchy, D. (2009). The global burden of hepatitis C. Liver Int. 29 Suppl 1, 74-81.
17 Macatangay, B.J., Landay, A.L., and Rinaldo, C.R. (2012). MDSC: a new player in HIV immunopathogenesis. AIDS 26, 1567-1569.   DOI
18 Neumann-Haefelin, C., and Thimme, R. (2013). Adaptive immune responses in hepatitis C virus infection. Curr. Top. Microbiol. Immunol. 369, 243-262.
19 Lavanchy, D. (2011). Evolving epidemiology of hepatitis C virus. Clin. Microbiol. Infect. 17, 107-115.   DOI   ScienceOn
20 Lechner, F., Gruener, N.H., Urbani, S., Uggeri, J., Santantonio, T., Kammer, A.R., Cerny, A., Phillips, R., Ferrari, C., Pape, G.R., et al. (2000). CD8+ T lymphocyte responses are induced during acute hepatitis C virus infection but are not sustained. Eur. J. Immunol. 30, 2479-2487.   DOI
21 Ochoa, A.C., Zea, A.H., Hernandez, C., and Rodriguez, P.C. (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13, 721s-726s.   DOI   ScienceOn
22 Qin, A., Cai, W., Pan, T., Wu, K., Yang, Q., Wang, N., Liu, Y., Yan, D., Hu, F., Guo, P., et al. (2013). Expansion of monocytic myeloidderived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J. Virol. 87, 1477-1490.   DOI
23 Ramachandran, I.R., Martner, A., Pisklakova, A., Condamine, T., Chase, T., Vogl, T., Roth, J., Gabrilovich, D., and Nefedova, Y. (2013). Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J. Immunol. 190, 3815-3823.   DOI   ScienceOn
24 Rodriguez, P.C., and Ochoa, A.C. (2008). Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180-191.   DOI   ScienceOn
25 Tacke, R.S., Lee, H.C., Goh, C., Courtney, J., Polyak, S.J., Rosen, H.R., and Hahn, Y.S. (2012). Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 55, 343-353.   DOI   ScienceOn
26 Rodriguez, P.C., Zea, A.H., DeSalvo, J., Culotta, K.S., Zabaleta, J., Quiceno, D.G., Ochoa, J.B., and Ochoa, A.C. (2003). L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171, 1232-1239.   DOI
27 Sandalova, E., Laccabue, D., Boni, C., Watanabe, T., Tan, A., Zong, H.Z., Ferrari, C., and Bertoletti, A. (2012). Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 143, 78-87 e73.   DOI   ScienceOn
28 Srivastava, M.K., Sinha, P., Clements, V.K., Rodriguez, P., and Ostrand-Rosenberg, S. (2010). Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70, 68-77.
29 Vasquez-Dunddel, D., Pan, F., Zeng, Q., Gorbounov, M., Albesiano, E., Fu, J., Blosser, R.L., Tam, A.J., Bruno, T., Zhang, H., et al. (2013). STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest. 123, 1580-1589.   DOI   ScienceOn
30 Vollbrecht, T., Stirner, R., Tufman, A., Roider, J., Huber, R.M., Bogner, J.R., Lechner, A., Bourquin, C., and Draenert, R. (2012). Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26, F31-37.   DOI
31 Xu, D., Fu, J., Jin, L., Zhang, H., Zhou, C., Zou, Z., Zhao, J.M., Zhang, B., Shi, M., Ding, X., et al. (2006). Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J. Immunol. 177, 739-747.   DOI
32 Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J., McDermott, D., Quiceno, D., Youmans, A., O'Neill, A., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044-3048.   DOI
33 Yang, B., Wang, X., and Ren, X. (2012). Amino acid metabolism related to immune tolerance by MDSCs. Int. Rev. Immunol. 31, 177-183.   DOI   ScienceOn
34 Zhang, J.Y., Zhang, Z., Lin, F., Zou, Z.S., Xu, R.N., Jin, L., Fu, J.L., Shi, F., Shi, M., Wang, H.F., et al. (2010). Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51, 81-91.   DOI   ScienceOn
35 Young, M.R., Newby, M., and Wepsic, H.T. (1987). Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 47, 100-105.
36 Zhang, Z., Zhang, J.Y., Wherry, E.J., Jin, B., Xu, B., Zou, Z.S., Zhang, S.Y., Li, B.S., Wang, H.F., Wu, H., et al. (2008). Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology 134, 1938-1949, 1949 e1931-1933.   DOI   ScienceOn
37 Zou, Z., Li, B., Xu, D., Zhang, Z., Zhao, J.M., Zhou, G., Sun, Y., Huang, L., Fu, J., Yang, Y., et al. (2009). Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J. Clin. Gastroenterol. 43, 182-190.   DOI   ScienceOn
38 Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., Castelli, C., Mariani, L., Parmiani, G., and Rivoltini, L. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25, 2546-2553.   DOI   ScienceOn
39 Hoechst, B., Ormandy, L.A., Ballmaier, M., Lehner, F., Kruger, C., Manns, M.P., Greten, T.F., and Korangy, F. (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135, 234-243.   DOI   ScienceOn
40 Thimme, R., Oldach, D., Chang, K.M., Steiger, C., Ray, S.C., and Chisari, F.V. (2001). Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194, 1395-1406.   DOI   ScienceOn