• Title/Summary/Keyword: Cellular Network

Search Result 938, Processing Time 0.022 seconds

Fast Pattern Classification with the Multi-layer Cellular Nonlinear Networks (CNN) (다층 셀룰라 비선형 회로망(CNN)을 이용한 고속 패턴 분류)

  • 오태완;이혜정;손홍락;김형석
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.540-546
    • /
    • 2003
  • A fast pattern classification algorithm with Cellular Nonlinear Network-based dynamic programming is proposed. The Cellular Nonlinear Networks is an analog parallel processing architecture and the dynamic programing is an efficient computation algorithm for optimization problem. Combining merits of these two technologies, fast pattern classification with optimization is formed. On such CNN-based dynamic programming, if exemplars and test patterns are presented as the goals and the start positions, respectively, the optimal paths from test patterns to their closest exemplars are found. Such paths are utilized as aggregating keys for the classification. The algorithm is similar to the conventional neural network-based method in the use of the exemplar patterns but quite different in the use of the most likely path finding of the dynamic programming. The pattern classification is performed well regardless of degree of the nonlinearity in class borders.

Strategies for Evolution in Neural Networks based on Cellular Automata (셀룰라 오토마타 기반 신경 회로망의 진화를 위한 전략)

  • Jo, Yong-Goon;Lee, Won-Hee;Kang, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2193-2196
    • /
    • 1998
  • Cellular automata are dynamical systems in which space and time are discrete, where each cell has a finite number of states and updates its states by interactive rules among the cell-neighborhood. From the characteristics of self-reproduction and self- organization, it is possible to create a neural network which has the specific patterns or structures dynamically. CAM-Brain is a kind of such neural network system which evolves its structure by adopting evolutionary computations like genetic algorithms (GA). In this paper, we suggest the evolution strategies for the structure of neural networks based on cellular automata.

  • PDF

Modern Telecommunications Media and Strategy for Intelligent Transportation System (지능형물류교통시스팀을 위한 첨단 정보통신기술과 향후 추진 전략)

  • 김성수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.91-97
    • /
    • 1997
  • The objective of a traffic management system is to promote safe driving, low pollution, short travel time, and optimized traffic flow by naturally distributing the flow of traffic through the use of suitable telecommunications media. Such traffic management systems will be improved by integrating dynamic traffic data and two-way communication media because cars can work as sensors. The purpose of this paper is to help organizations trying to select the correct telecommunications media for minimal-cost investment options without loss of functionality. The wireless communications for an intelligent transportation system (ITS) are introduced in this paper. We describe which kind of telecommunication media are suitable. FM broadcast type media or cellular phone can be recommended to provide real time traffic and roadway conditions in the first stage of ITS, because existing broadcast base station or cellular network facilities can be used. It is expected that cellular radio network or satellites are used for communication. Finally, the strategy and deployment plan of an ITS are described based on selections of telecommunication media in Korea.

  • PDF

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.

Resource Allocation Based on Location Information in D2D Cellular Networks (D2D 셀룰러 네트워크에서 위치기반 자원할당)

  • Kang, Soo-Hyeong;Seo, Bang-Won;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.750-757
    • /
    • 2017
  • Recently, mobile internet traffic has rapidly increased as the huge increase of the smart phone and mobile devices. D2D get attention, because D2D is known that it reduce the traffic load of the base station and also improves the reliability of the network performance. However, D2D has a problem that the efficiency decreases as interference is increased. In this paper, we propose a resource allocation scheme to use the resources efficiently when the D2D link share the cellular resources in the cellular network based the uplink. D2D communication utilizes the location information for allocating resources when the eNB know the location of all devices. The proposed scheme select some cellular user using location informations in order to ensure performance of the D2D communication. and D2D link choose cellular user that performs resource allocation using only selected cellular user. Simulation results show optimal value of resource selection in order to ensure most performance of the D2D communication.

Dynamic Channel Allocation Control with thresholds in Wireless Cellular Networks using Simpy

  • Cao, Yang;Ro, Cheul-Woo
    • International Journal of Contents
    • /
    • v.8 no.2
    • /
    • pp.19-22
    • /
    • 2012
  • New and handoff calls control mechanisms are the key point to wireless cellular networks. In this paper, we present an adaptive algorithm for dynamic channel allocation scheme with guard channels and also with handoff calls waiting queue ensuring that handoff calls take priority over new calls. Our goal is to find better tradeoff between handoffs and new calls blocking probabilities in order to achieve more efficient channel utilization. Simpy is a Python based discrete event simulation system. We use Simpy to build our simulation models to get analytical data.

Enhanced Handoff for Micro Mobility Protocol (Micro Mobility Protocol의 핸드오프 성능개선)

  • Jung, Won-Soo;Yun, Chan-Young;Oh, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.209-211
    • /
    • 2004
  • We can categorize mobility two main fields in IP environment. If Mobile IP manages macro mobility, Cellular IP deal with micro mobility. For seamless connection, it is major problem to reduce packet loss in the network layer during handoff. This paper will introduce a scheme which reduces packet loss during micro mobility which use indirect handoff mechanism in Cellular IP, and will verify the efficiency of that scheme by computer simulation.

  • PDF

STABILITY OF IMPULSIVE CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Lijuan;Yu, Lixin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1327-1335
    • /
    • 2011
  • This paper demonstrates that there is a unique exponentially stable equilibrium state of a class of impulsive cellular neural network with delays. The analysis exploits M-matrix theory and generalized comparison principle to derive some easily verifiable sufficient conditions for the global exponential stability of the equilibrium state. The results extend and improve earlier publications. An example with its simulation is given for illustration of theoretical results.

ON STEPANOV WEIGHTED PSEUDO ALMOST AUTOMORPHIC SOLUTIONS OF NEURAL NETWORKS

  • Lee, Hyun Mork
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.491-502
    • /
    • 2022
  • In this paper we investigate some sufficient conditions to guarantee the existence and uniqueness of Stepanov-like weighted pseudo almost periodic solutions of cellular neural networks on Clifford algebra for non-automomous cellular neural networks with multi-proportional delays. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.