• 제목/요약/키워드: Cell-signaling

검색결과 2,572건 처리시간 0.028초

p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

  • Shrestha, Mohan;Park, Pil-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권5호
    • /
    • pp.487-498
    • /
    • 2016
  • Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.

NMR Structure of Syndecan-4L reveals structural requirement for PKC signalling

  • Koo, Bon-Kyoung;Joon Shin;Oh, Eok-Soo;Lee, Weontae
    • 한국자기공명학회:학술대회논문집
    • /
    • 한국자기공명학회 2002년도 International Symposium on Magnetic Resonance
    • /
    • pp.90-90
    • /
    • 2002
  • Syndecans, transmembrane heparan sulfate proteoglycans, are coreceptors with integrin in cell adhesion process. It forms a ternary signaling complex with protein kinase C and phosphatidylinositol 4,5 bisphosphate (PIP2) for integrin signaling. NMR data indicates that cytoplasmic domain of syndecan-4 (4L) undergoes a conformational transition in the presence of PIP2, forming oligomeric conformation. The structure based on NMR data demonstrated that syndecan-4L itself forms a compact intertwined symmetric dimer with an unusual clamp shape for residues Leu$^{186}$ -Ala$^{195}$ . The molecular surface of the syndecan-4L dimer is highly positively charged. In addition, no inter-subunit NOEs in membrane proximal amino acid resides (Cl region) has been observed, demonstrating that the Cl region is mostly unstructured in syndecan-4L dimmer. However, the complex structure in the presence of PIP2 induced a high order multimeric conformation in solution. In addition, phosphorylation of cytoplasmic domain induces conformational change of syndecan-4, resulting inhibition of PKC signaling. The NMR structural data strongly suggest that PIP2 promotes oligomerization of syndecan-4 cytoplasmic domain for PKC activation and further induces structural reorganization of syndecan for mediating signaling network in cell adhesion procedure.

  • PDF

Neurovascular Mechanisms in Stroke, Neurodegeneration and Recovery

  • Lo, Eng-H.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.223-229
    • /
    • 2006
  • The emerging concept of the 'neurovascular unit' may enable a powerful paradigm shift for neuroscience. Instead of a pure focus on the 'neurobiology' of disease, an opportunity now exists to return to a more integrative approach. The neurovascular unit emphasizes that signaling between vascular and neuronal compartments comprise the basis for both function and dysfunction in brain. Hence, brain disorders are not just due to death of neurons, but instead manifested as cell signaling perturbations at the neurovascular interface. In this mini-review, we will examine 3 examples of this hypothesis: neurovascular mechanisms involved in the thrombolytic therapy of stroke, the crosstalk between neurogenesis and angiogenesis, and the link between vascular dysfunction and amyloid pathology in Alzheimer's disease. An understanding of cell-cell and cell-matrix signaling at the neurovascular interface may yield new approaches for targeting CNS disorders.

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

A Feasible Role of Neuropilin Signaling in Pharyngeal Pouch Formation in Zebrafish

  • Chong Pyo Choe
    • 한국발생생물학회지:발생과생식
    • /
    • 제27권3호
    • /
    • pp.137-147
    • /
    • 2023
  • Pharyngeal pouches are an important epithelial structure controlling facial skeletal development in vertebrates. A series of pouches arise sequentially in the pharyngeal endoderm through collective cell migration followed by rearrangement of pouch-forming cells. While crucial transcription factors and signaling molecules have been identified in pouch formation, a role for Neuropilins (Nrps) in pouch development has not yet been analyzed in any vertebrates. Nrps are cell surface receptors essential for angiogenesis and axon guidance. In all vertebrates, the two Nrp family members, Nrp1 and Nrp2, are conserved in the genome, with two paralogs for Nrp1 (Nrp1a and Nrp1b) and Nrp2 (Nrp2a and Nrp2b) being identified in zebrafish. Here, I report a potential requirement of Nrp signaling in pouch development in zebrafish. nrp1a and nrp2b were expressed in the developing pouches, with sema3d, a ligand for Nrps, being expressed in the pouches. Knocking down Nrps signaling in the pharyngeal endoderm led to severe defects in pouches and facial cartilages. In addition, blocking Mitogen-activated protein kinase (MAPK) activities, a downstream effector of Nrp signaling, in the pharyngeal endoderm caused similar defects in pouches and facial skeleton to those by knocking down Nrps signaling. My results suggest that Nrp signaling acts for pouch formation through MAPK.

Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

  • Dang, Van Cuong;Kim, Hyoung Kyu;Marquez, Jubert;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.213-220
    • /
    • 2016
  • Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular $Ca^{2+}$, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with $0.5{\mu}g/ml$ BG, $100{\mu}g/ml$ peptidoglycan (PGN), or $10{\mu}M$ A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial $Ca^{2+}$ uniporter has an important regulatory role in BG-induced mast cell degranulation.

Identification of the Calcium Binding Sites in Translationally Controlled Tumor Protein

  • Kim, Moon-Hee;Jung, Yoon-Wha;Lee, Kyung-Lim;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • 제23권6호
    • /
    • pp.633-636
    • /
    • 2000
  • Translationally controlled tumor protein (TCTP), also known as IgE-dependent histamine-releasing factor, is a growth-related tumor protein. Although the primary sequence of rat TCTP does not reveal any recognizable $Ca^{2+}$ -binding motif, previous studies have demonstrated that rat TCTP consisting of 172 amino acids is a $Ca^{2+}$ -binding protein. However. the region of TCTP required for $Ca^{2+}$ interaction has not been mapped to the molecule. Here, we reported that the $Ca^{2+}$ binding region of TCTP which was mapped by using a combination of deletion constructs of rat TCTP and $^{45}Ca^{2+}$-overlay assay. was confined to amino acid residues 81-112. This binding domain did not show any peculiar loop of calcium- binding motif such as CaLB domain and EF hand motif and it seems to be constituted of random coil regions neighboring the a helix. Thus, our data confirm that TCTP is a novel family of $Ca^{2+}$ -binding protein.

  • PDF

Src Redox Regulation: There Is More Than Meets the Eye

  • Chiarugi, Paola
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.329-337
    • /
    • 2008
  • Src-family kinases are critically involved in the control of cytoskeleton organization and in the generation of integrin-dependent signaling responses, inducing tyrosine phosphorylation of many signaling and cytoskeletal proteins. Activity of the Src family of tyrosine kinases is tightly controlled by inhibitory phosphorylation of a carboxy-terminal tyrosine residue, inducing an inactive conformation through binding with its SH2 domain. Dephosphorylation of C-ter tyrosine, as well as its deletion of substitution with phenylalanine in oncogenic Src kinases, leads to autophosphorylation at a tyrosine in the activation loop, thereby leading to enhanced Src activity. Beside this phophorylation/dephosphorylation circuitry, cysteine oxidation has been recently reported as a further mechanism of enzyme activation. Mounting evidence describes Src activation via its redox regulation as a key outcome in several circumstances, including growth factor and cytokines signaling, integrin-mediated cell adhesion and motility, membrane receptor cross-talk as well in cell transformation and tumor progression. Among the plethora of data involving Src kinase in physiological and pathophysiological processes, this review will give emphasis to the redox component of the regulation of this master kinase.

Comparison of the Antioxidant Activities of Various Processed Fruits and Vegetables in APAP-induced Oxidative Stress in BALB/c Mice

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Minki;Kim, Hyun-Kyoung;Rhee, Man Hee
    • 대한의생명과학회지
    • /
    • 제25권3호
    • /
    • pp.211-217
    • /
    • 2019
  • Research has established a strong connection between a diet rich in antioxidants and a decreased incidence of cardiovascular disease and cancer. These diets prominently feature fruits and vegetables containing high amounts of vitamins A, B, C and E, carotenoids, and minerals. Different processing conditions for these foods can alter their nutrient complement and potency. This study compared the antioxidant properties of a range of processed fruits and vegetables to see which yielded the highest level of antioxidant activity. We used an acetaminophen-induced oxidative stress mouse model to evaluate the antioxidant effects of extracts of processed apple, pear, carrot, cabbage, broccoli, and radish. Our results showed that the administration of these fruits decreased the expression of oxidative stress indicators such as ALT, AST, catalase, superoxide dismutase, GPx, and 8-OHdG. They also significantly protected mice livers from APAP-induced damage, as shown by histological evaluation. Our results have demonstrated the positive effects of processed fruits and vegetables in a mouse model of oxidative stress.

Deoxypodophyllotoxin Induces ROS-Mediated Apoptosis by Modulating the PI3K/AKT and p38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma

  • Seo, Ji-Hye;Yoon, Goo;Park, Seryoung;Shim, Jung-Hyun;Chae, Jung-Il;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1103-1109
    • /
    • 2022
  • Deoxypodophyllotoxin (DPT), a naturally occurring flavonolignan, possesses several pharmacological properties, including anticancer property. However, the mechanisms underlying DPT mode of action in oral squamous cell carcinoma (OSCC) remain unknown. This study aimed to investigate the anticancer effects of DPT on OSCC and the underlying mechanisms. Results of the MTT assay revealed that DPT significantly reduced the cell viability in a time- and dose-dependent manner. Flow cytometry analysis revealed that DPT induces apoptosis in OSCC cells in a dose-dependent manner. Moreover, DPT enhanced the production of mitochondrial reactive oxygen species (ROS) in OSCC cells. Mechanistically, DPT induced apoptosis in OSCC cells by suppressing the PI3K/AKT signaling pathway while activating the p38 MAPK signaling to regulate the expression of apoptotic proteins. Treatment with SC79, an AKT activator, reversed the effects of DPT on AKT signaling in OSCC cells. Taken together, these results provide the basis for the use of DPT in combination with conventional chemotherapy for the treatment of oral cancer.