• Title/Summary/Keyword: Cell-in-cell

Search Result 56,424, Processing Time 0.067 seconds

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

An Adaptive Coverage Control Algorithm for Throughput Improvement in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 성능 향상을 위한 적응적 커버리지 조절 기법)

  • Hyun, Myung-Reun;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.876-882
    • /
    • 2009
  • In this paper, we propose a sub-cell coverage control algorithm for enhancement of the cell throughput in OFDMA based relay systems. Relay station (RS) is exploited for improved quality of the received signal in cellular communication systems, especially in shadow areas. However, since a RS requires additional radio resource consumption for the link between the base station (BS) and the RS, we have to carefully control the coverage areas if a mobile station (MS) is serviced via the BS or the RS considering the cell throughput. We consider radio resource reuse as well for the sub-cell coverage configuration by applying various reuse patterns between RSs. We also consider a time varying system by adaptively changing the threshold for coverage depending on the MSs' traffic in the cell. We initially determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the MS from the BS and RSs, respectively. Then, the "sub-cell coverage threshold" varies based on the "effective transmitted bits per sub-channel" with time. Simulation result shows that the proposed "time varying coverage control algorithm" leads to throughput improvement compared to the fixed sub-cell coverage configuration.

Dendritic Cell Based Cancer Immunotherapy: in vivo Study with Mouse Renal Cell Carcinoma Model (수지상세포를 이용한 항암 면역 치료: 생쥐 신장암 모델을 이용한 연구)

  • Lee, Hyunah;Choi, Kwang-Min;Baek, Soyoung;Lee, Hong-Ghi;Jung, Chul-Won
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • Background: As a potent antigen presenting cell and a powerful inducer of antigen specific immunity, dendritic cells (DCs) are being considered as a promising anti-tumor therapeutic module. The expected therapeutic effect of DCs in renal cell carcinoma was tested in the mouse model. Established late-stage tumor therapeutic (E-T) and minimal residual disease (MRD) model was considered in the in vivo experiments. Methods: Syngeneic renal cell carcinoma cells (RENCA) were inoculated either subcutaneously (E-T) or intravenously (MRD) into the Balb/c mouse. Tumor cell lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started 3 week (E-T model) or one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, the tumor growth and the systemic immunity were observed. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with RENCA cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor growth (E-T model) or formation (MRD model) was suppressed in pulsed-DC treated group. RENCA specific lymphocyte proliferation was observed in the RENCA tumor-bearing mice treated with pulsed-DCs. Primary cytotoxic T cell activity against RENCA cells was increased in pulsed-DC treated group. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs in established or minimal residual disease/metastasis state of renal cell carcinoma. Systemic tumor specific immunity including cytotoxic T cell activity was modulated also in pulsed-DC treated group.

Histone Deacetylases and their Inhibitors as Potential Therapeutic Drugs for cholangiocarcinoma - Cell Line findings

  • Sriraksa, Ruethairat;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2503-2508
    • /
    • 2013
  • Histone deacetylation mediated by histone deacetylases (HDACs) has been reported as one of the epigenetic mechanisms associated with tumorigenesis. The poor responsiveness of anticancer drugs found with cholangiocarcinoma (CCA) leads to short survival rate. We aimed to investigate mRNA expression of HDACs class I and II, and the effect of HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and valproic acid (VPA), in CCA in vitro. Expression of HDACs was studied in CCA cell lines (M213, M214 and KKU-100) and an immortal cholangiocyte (MMNK1) by semi-quantitative reverse transcription-PCR. SAHA and VPA, as well as a classical chemotherapeutic drug 5 -fluorouacil (5-FU) were used in this study. Cell proliferation was determined by sulforhodamine assay. $IC_{50}$ and $IC_{20}$ were then analyzed for each agent and cell line. Moreover, synergistic potentional of VPA or SAHA in combination with 5-FU at sub toxic does ($IC_{20}$) of each agent was also evaluated. Statistic difference of HDACs expression or cell proliferation in each experimental condition was analyzed by Student's t-test. The result demonstrated that HDACs were expressed in all studied cell types. Both SAHA and VPA inhibited cell proliferation in a dose-dependent manner. Interestingly, KKU-100 which was less senstitive to classical chemotheraoeutic 5-FU was highly was sensitive to HDAC inhibitors. Simultaneous combination of subtoxic doses of HDAC inhibitors and 5-FU signiicantly inhibited cell proliferation in CCA cell lines compared to single sgent treatment($P{\leq}0.01$), while sequentially combined treatments were less effective. The present study showed inhibitory effects of HDACIs on cell proliferation in CCA cell lines, with synergistic antitumor potential demonstrated by simultaneous combination of VPA or SAHA with 5-FU, suggesting a novel alternative therapeutic strategy in effective treatment of CCA.

In Vitro Cytotoxicity against Human Cancer Cell and 3T3-L1 Cell, Total Polyphenol Content and DPPH Radical Scavenging of Codonopsis lanceolata according to the Concentration of Ethanol Solvent

  • Boo, Hee-Ock;Park, Jeong-Hun;Lee, Moon-Soon;Kwon, Soo-Jeong;Kim, Hag-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.3
    • /
    • pp.195-201
    • /
    • 2018
  • This study was executed to evaluate the phenolic content, DPPH radical scavenging rate, and the cytotoxic effect in human cancer cell, 3T3-L1 cell from C. lanceolata extracts at various ethanol concentration. Total polyphenol and flavonoid content of the C. lanceolata at various ethanol concentration showed the high amount in 70%, 100% ethanol extract. The DPPH radical scavenging activity progressively increased in a dose-dependent manner, and showed the highest in 100% ethanol extract. The cytotoxic effect against human cancer cell of the C. lanceolata was higher in 50% and 70% ethanol extracts. In particular, the cytotoxic effect in MCF-7 cell was relatively higher than in other cells. The $IC_{50}$ (concentration causing 50% cell death) value showed the highest on MCF-7 cell ($538.39{\mu}g/m{\ell}$ in 70% ethanol extract, and exhibited significant activity against Hela cell ($637.87{\mu}g/m{\ell}$, Calu-6 cell ($728.64{\mu}g/m{\ell}$. The extract of 70% ethanol at $1,000{\mu}g/m{\ell}$ exhibited a pronounced cytotoxic effect on 3T3-L1 cell comparable to that of the other extracts, and reduced in a concentration-dependent manner.

Study on Self-moving Cell Linear Motor Using Piezo-stack actuators (적층 압전 작동기를 이용한 Self-moving Cell 선형모터 연구)

  • 이진호;김재환;최관영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.371-375
    • /
    • 2001
  • The concept of a new linear motor that uses piezo-stack actuator is demonstrated. The working principle is far different from the conventional inchworm motor. This motor is based on the self-moving cell concept. The linear motor has three cells and each cell is constructed with one piezo-stack actuator and a shell structure. A cell train is constructed by connecting these cells and the cell train is fitted into a guide way with a proper interference. The cell train moves along the guide way, by activating each cell in succession. The moving motion of the motor is tested. Since this linear motor uses piezo-stack actuator with unified clamping cell, it can produce fast speed, high resolution and large push force.

  • PDF

Arrest of Cell Growth by Inhibition of Endogenous Reverse Transcription Activity in Cancer and Somatic Cell Lines (사람의 암세포주 및 정상세포주에서 역전사 효소의 억제에 의한 세포 성장의 제한)

  • Mi-Jeong Kim;Sung-Ho Lee;Jong-Kuen Park;Byeong-Gyun Jeon
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.365-376
    • /
    • 2024
  • The present study assessed the cytotoxic effects on cell growth and senescence in human cancer (A-549, AGS, HCT-116, MDA-MB-231, and U 87-MG) and normal (MRC-5 and mesenchymal stem cells) cell lines treated with efavirenz (EFA), an inhibitor of non-nucleoside reverse transcriptase (RTase). Following EFA treatment, the half-maximal inhibitory concentration (IC50) values were approximately 15 µM, and the IC50 value was significantly (p<0.05) lower in the cancer cell lines, compared to normal cell lines. After determining the IC50 values against EFA, each cell line was treated with 15 µM EFA for up to one week. Significant (p<0.05) decreases in endogenous RTase and telomerase activity were observed in the cancer cell lines. RTase and telomerase activity were absent or detected at very low levels in both EFA-untreated and treated MRC-5 and MSC normal cells. The cell doubling time (CDT) was also significantly (p<0.05) prolonged by the decreased cell growth rate in the EFA-treated cancer cell lines compared to the untreated cell lines. Furthermore, EFA-treated cancer cells displayed a high number of cells with a high intensity of senescence-associated ß-galactosidase activity (SA-ß-gal activity), compared to the untreated cells. The present study showed that inhibition of RTase activity induces cellular senescence and arrests cell growth in human cancer cell lines; however, normal cell lines showed greater tolerance against EFA. RTase treatment could offer optional chemotherapy for cancer treatment in human cancer cell lines with high RTase activity.

BcI-2 Over-expression Reduced the Serum Dependency and Improved the Nutrient Metabolism in a NS0 Cells Culture

  • Tey Beng Ti;Al-Rubeai Mohamed
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.254-261
    • /
    • 2005
  • The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The ${\mu}_{max}$ and $K_s$ for the Bcl-2 cell line is $0.927day^{-1}\;and\;0.947\%(v/v)$ respectively, which are $21\%$ greate and $7\%$ lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a $17\%$ decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EM suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.

Temporal and Spatial Regulation of Cell Cycle Genes during Maize Sex Determination (옥수수 성 결정에 있어서 세포주기 유전자들의 시간적, 공간적 조절)

  • Lee, Jung-Ro;Kim, Jong-Cheol
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.828-833
    • /
    • 2006
  • Maize (Zea mays L.) pistil cell death and stamen cell arrest are pivotal process on the sex determination, which diverges from bisexual state of floral meristem to unisexual state in staminate or pistillate floret. We investigated the temporal and spatial distribution of cell cycle gene expression during maize sex determination. The positive regulatory genes of cell cycle, cyclin A, cyclin B, cyclin dependent kinase (CDK) and Mad2 were highly expressed in the developing pistil and stamen but the expression was disappeared in the dying pistil and arresting stamens. In contrast, the negative regulatory genes of cell cycle, Wee1 and CDK inhibitor (CKI) were expressed in the arresting stamens in the wild-type ear and tasselseed2 mutant tassel, however, these genes were not detected in dying pistil although the cyclin B gene expression was disappeared. These results suggest that both the pistil cell death and stamen cell arrest process in maize sex determination are involved in cell cycle regulation, but the different expression patterns of negative regulatory cell cycle genes in the arresting stamens and aborting pistils suggest that the two processes may have distinctive modes of action.

Effects of Storage-protein 2 Derived from Silkworm Hemolymph on Reduction of Aggregation and Cell Death in CHO Cells (CHO 세포에서 누에 혈림프 유래 Storage-protein 2의 세포응집 및 세포사멸 억제 효과)

  • Lim, Jin-Hyuk;Cha, Hyun-Myoung;Kim, Z-Hun;Choi, Yong-Soo;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.66-72
    • /
    • 2016
  • Chinese hamster ovary (CHO) cells have been widely used for production of various recombinant proteins such as cytokines and monoclonal antibodies. The cell aggregation and cell death in CHO cell culture directly affect cell viability, and productivity and quality of products. In this study, we investigated preventing effects of storage-protein 2 (SP2) derived from silkworm hemolymph on cell aggregation and cell death in CHO cell culture producing albuminerythropoietin (Alb-EPO). The viable cell density in the culture supplemented with 2 mg/mL SP2 was 1.71-fold higher than that in control culture. Increased titer of Alb-EPO was also found in the culture with SP2. Morphology of CHO cells in SP2 supplemented cultures did not differ from that of control. In addition, the cell aggregation rate of the SP2 cultures was reduced 20% compared to the control. Finally, we confirmed that the apoptosis was strongly suppressed by addition of SP2 in the cultures. These results clearly demonstrate that SP2 can be served as an effective supplement for enhancing titer of Alb-EPO via reducing cell aggregation and cell death.