BcI-2 Over-expression Reduced the Serum Dependency and Improved the Nutrient Metabolism in a NS0 Cells Culture

  • Tey Beng Ti (Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Al-Rubeai Mohamed (Department of Chemical and Biochemical Engienering, University College Dublin)
  • Published : 2005.06.01

Abstract

The over-expression of Bcl-2 has greatly improved the culture period, specific growth rate, and maximum viable cell density of NS0 cells culture under low serum condition. Further analysis of these data suggests that a saturation model of the Monod type can be used to represent the relationships of specific growth rate and initial serum concentration. The ${\mu}_{max}$ and $K_s$ for the Bcl-2 cell line is $0.927day^{-1}\;and\;0.947\%(v/v)$ respectively, which are $21\%$ greate and $7\%$ lower respectively than its control counterpart. Study on the amino acid supplementation revealed that Bcl-2 cell lines possess greater improvement in the specific growth rate and maximum viable cell density compared to the control cell lines. A further increase in the amino acid supplementation has resulted a $17\%$ decrease in specific growth rate and no improvement in maximum viable cell density in the control culture. However, the Bcl-2 cell line exhibited a better growth characteristic in this culture condition compared to that of control cell lines. The higher specific growth rate and maximum viable cell density of the Bcl-2 cell line in medium fortified with serum and MEM EM suggested a more efficient nutrient metabolism compared to that in the control cell line. The low serum and amino acid utilisation rate and the higher cell yield may prove to be important in the development of serum/protein free culture.

Keywords

References

  1. Renner, W. A., K. H. Lee, V. Hatzimanikatis, J. E. Bailey, and H. M. Eppenberger (1995) Recombinant cyclin-E expression activates proliferation and obviates surface attachment of chinese hamster ovary (CHO) cells in proteinfree medium. Biotechnol. Bioeng. 47: 476-482 https://doi.org/10.1002/bit.260470409
  2. Zanghi, J. A., M. Fussenegger, and J. E. Bailey (1999) Serum protects protein-free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnol. Bioeng. 64: 108-119 https://doi.org/10.1002/(SICI)1097-0290(19990705)64:1<108::AID-BIT12>3.0.CO;2-B
  3. Tey, B. T., R. P. Singh, and M. Al-Rubeai (2001) Programmed cell death: An overview of apoptosis in cell culture. Asia Pac. J. Mol. Biol. Biotechnol. 9: 1-28
  4. Itoh, Y., H. Ueda, and E. Suzuki (1995) Over-expression of Bcl-2, apoptosis suppressing gene-prolonged viable culture period of hybridoma and enhanced antibody-production. Biotechnol. Bioeng. 48: 118-122 https://doi.org/10.1002/bit.260480205
  5. Simpson, N. H., A. E. Milner, and M. Al-Rubeai (1997) Prevention of hybridoma cell death by Bcl-2 during suboptimal culture conditions. Biotechnol. Bioeng. 54: 1-16 https://doi.org/10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K
  6. Tey, B. T., R. P. Singh, L. Piredda, M. Piacentini, and M. Al-Rubeai (2000) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J. Biotechnol. 79: 147-159 https://doi.org/10.1016/S0168-1656(00)00223-6
  7. Goswami, J., A. J. Sinskey, H. Steller, G. N. Stephanopoulos, and D. I. C. Wang (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol. Bioeng. 62: 632-640 https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<632::AID-BIT2>3.0.CO;2-I
  8. Mastrangelo, A. J., J. M. Hardwick, F. Bex, and M. J. Betenbaugh (2000) Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol. Bioeng. 67: 544-554 https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<544::AID-BIT5>3.0.CO;2-#
  9. Tey, B. T., R. P. Singh, L. Piredda, M. Piacentini, and M. Al-Rubeai (2000) Influence of Bcl-2 on cell death during cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol. Bioeng. 68: 31-43 https://doi.org/10.1002/(SICI)1097-0290(20000405)68:1<31::AID-BIT4>3.0.CO;2-L
  10. Singh, R. P., M. Al-Rubeai, C. D. Gregory, and A. N. Emery (1994) Cell-death in bioreactors: A role for apoptosis. Biotechnol. Bioeng. 44: 720-726 https://doi.org/10.1002/bit.260440608
  11. Mercille, S. and B. Massie (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 44: 1140-1154 https://doi.org/10.1002/bit.260440916
  12. Simpson, N. H., R. P. Singh, A. Perani, C. Goldenzon, and M. Al-Rubeai (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 59: 90-98 https://doi.org/10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6
  13. Bebbington, C. R. and C. G. Hentschel (1987) The use of vectors based on gene amplication for the expression of cloned genes in mammalian cells. pp. 163-187. In: D. M. Glover (ed.). DNA Cloning: A Practical Approach Vol. 3. IRL, Oxford, UK
  14. Leelavatcharamas, V. (1997) Growth, Gamma Interferon Production and Cell Cycle in Batch, Continuous and Perfusion Cultures. Ph.D. Thesis. University of Birmingham, UK
  15. Dalili, M. and D. F. Ollis (1989) Transient kinetics of hybridoma growth and monoclonal-antibody production in serum-limited cultures. Biotechnol. Bioeng. 33: 984-990 https://doi.org/10.1002/bit.260330807
  16. Leelavatcharamas, V., A. N. Emery, and M. Al-Rubeai (1994) Growth and interferon-gamma production in batch culture of CHO cells. Cytotechnology 15: 65-71 https://doi.org/10.1007/BF00762380
  17. Singh, R. P., A. N. Emery, and M. Al-Rubeai (1996) Enhancement of survivability of mammalian cells by overexpression of the apoptosis-suppressor gene bcl-2. Biotechnol. Bioeng. 52:166-175 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<166::AID-BIT17>3.0.CO;2-M
  18. Fassnacht, D., S. Rossing, F. Franek, M. Al-Rubeai, and R. Portner (1998) Effect of Bcl-2 expression on hybridoma cell growth in serum- supplemented, protein-free and diluted media. Cytotechnology 26: 219-225 https://doi.org/10.1023/A:1007914619219
  19. Franek, F. and J. Dolnikova (1991) Nucleosomes occurring in protein-free hybridoma cell-culture: Evidence for programmed cell-death. FEBS Lett. 284: 285-287 https://doi.org/10.1016/0014-5793(91)80705-8
  20. Franek, F. (1995) Starvation-induced programmed death of hybridoma cells, prevention by amino-acid mixtures. Biotechnol. Bioeng. 45: 86-90 https://doi.org/10.1002/bit.260450112
  21. Ishaque, A. and M. Al-Rubeai (1999) Role of Ca, Mg and K ions in determining apoptosis and extent of suppression afforded by bcl-2 during hybridoma cell culture. Apoptosis 4: 335-355 https://doi.org/10.1023/A:1009643204200
  22. Ishaqe, A. and M. Al-Rubeai (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis 7: 231-239 https://doi.org/10.1023/A:1015343616059
  23. Tey, B. T. and M. Al-Rubeai (2004) Suppression of apoptosis in perfusion culture of Myeloma NS0 cells enhances cell growth but reduces antibody productivity. Apoptosis 9: 843-852 https://doi.org/10.1023/B:APPT.0000045792.63249.5a
  24. Plas, D. R. and C. B. Thompson (2002) Cell metabolism in the regulation of programmed cell death. Trends Endocrin. Met. 13: 74-78 https://doi.org/10.1016/S1043-2760(01)00528-8
  25. Susin, S. A., H. K. Lorenzo, N. Marzo, I. Zamzami, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger, and G. Kroemer (1999) Molecular characterization of mitochondrial apoptosis- inducing factor. Nature 397: 441-446 https://doi.org/10.1038/17135
  26. Al-Rubeai, M. (1998) Apoptosis and cell culture technology. Adv. Biochem. Eng. Biotechnol. 59: 226-249
  27. Xie, L. Z. and D. I. C. Wang (1996) Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network. Biotechnol. Bioeng. 52: 591-601 https://doi.org/10.1002/(SICI)1097-0290(19961205)52:5<591::AID-BIT6>3.0.CO;2-E
  28. Rabinovitz, M. (1992) The pleiotypic response to aminoacid deprivation is the result of interactions between components of the glycolysis and protein-synthesis pathways. FEBS Lett. 302: 113-116 https://doi.org/10.1016/0014-5793(92)80418-G
  29. Tey, B. T. and M. Al-Rubeai (2005) Effect of Bcl-2 overexpression on cell cycle and antibody productivity in chemostat cultures of myeloma NS0 cells. J. Biosci. Bioeng. (In Press) https://doi.org/10.1263/jbb.100.303
  30. Castagna, M., C. Shayakul, D. Trotti, V. F. Sacchi, W. R. Harvey, and M. A. Hediger (1997) Molecular characteristics of mammalian and insect amino acid transporters: Implications for amino acid homeostasis. J. Exp. Biol. 200: 269-286
  31. Franek, F. and K. ChladkovaSramkova (1995) Apoptosis and nutrition: Involvement of amino acid transport system in repression of hybridoma cell death. Cytotechnology 18: 113-117 https://doi.org/10.1007/BF00744326
  32. Franek, F. and K. Sramkova (1996) Cell suicide in starving hybridoma culture: Survival-signal effect of some amino acids. Cytotechnology 21: 81-89 https://doi.org/10.1007/BF00364839
  33. Franek, F. and K. Sramkova (1996) Protection of B lymphocyte hybridoma against starvation-induced apoptosis: Survival-signal role of some amino acids. Immunol. Lett. 52: 139-144 https://doi.org/10.1016/0165-2478(96)02591-6
  34. Kurita, T. and H. Namiki (1994) Apoptotic cell-death induced by serum and its prevention by thiols. J. Cell. Physiol. 161: 63-70 https://doi.org/10.1002/jcp.1041610109
  35. Ratan, R. R. and J. M. Baraban (1995) Apoptotic death in an in vitro model of neuronal oxidative stress. Clin. Exp. Pharmacol. Physiol. 22: 309-310 https://doi.org/10.1111/j.1440-1681.1995.tb02006.x